
ISyE4133: Advanced Optimization

Project #2: Predicting Cancer Diagnoses

Checkpoint: May 30 (11:59pm EST) Project: Jun 11 (11:59pm EST)

Problem Description

Machine learning develops data-driven methods to predict future outcomes. It employs statistics
to describe models, data to adapt these models to real-world scenarios, and optimization to find
the best way to configure the model to the data. In this problem, we will consider two models for
predicting the annual number of cancer diagnoses in the US. Our dataset can be downloaded from:

https://www.kaggle.com/datasets/varunraskar/cancer-regression.

In particular, we will use the dataset in the file cancer reg.csv, which contains several attributes
such as income level, demographics, and percentage of married households to predict the number of
diagnoses or deaths from cancer. However, like many real-world datasets, this dataset is not perfect:
it contains missing or invalid data as well as extraneous data. A visualization of the dataset is
shown below.

In this project, we will get our “hands dirty” and work with real data, build models, and develop
algorithms to turn data into predictions. At the same time, we will see what optimization techniques
are required to get this models to perform well, as well as understand the limitations of these models.
Students will:

1. Work with semi-real world data and learn how to parse, clean, and process them for data
analysis.

2. Basic familiarity with implementing linear and nonlinear models, as well as training them
within PyTorch to best fit models to data.

3. Initial practice with hyperparameter tuning, which allows for better empirical training of
models.

4. Exposure to basic hardware accelerators (e.g., GPUs) to speedup training.

1

https://www.kaggle.com/datasets/varunraskar/cancer-regression


Submission Instructions

• Please upload:

1. A single typed PDF report with your answers (when applicable) to the questions below.
Moreover, all plots in your report must be digitally created with a clear and appropriate
title, x and y-axis label, several x and y-axis tick labels1, and a legend when appropriate.
Your submission should also contain a brief paragraph explaining the contribution of
each member.

2. Python code. Your code must be able to run if we directly copy and paste the contents
into a Jupyter/Colab notebook. Code that does not run may automatically receive
a zero for the code portion2. You can assume when I run the code, I have a local
copy of cancer reg.csv and basic Python packages (e.g., numpy, pandas, matplotlib)
and necessary packages to run PyTorch.

• Outside references, including generative AI are allowed. But the submitted work must be one’s
own original work and effort. Use of outside reference must be properly cited, i.e., name of the
reference, a link to the reference (if possible), and how the reference was used. Collaborations
are only permitted within the group.

File Directory Structure

Your submission should consist of one PDF and one Python file. I will assign each group a number
when they submit the project checkpoint. When archiving your Python files and preparing your
PDF report, please use the following file directory structure for your submission:

report group <group number>.pdf

code group <group number>.py

For example, report group <group number>.pdf should be submitted as report group 1.pdf if
your group number is 1. You may lose a small number of points if your submission does not adhere
to this format.

1Matplotlib will usually have these automatically generated.
2I will try to be lenient for small bugs due to issues between running code on different machines.

2



Details

• Use the dataset described in the “Problem Description” section. In particular, we will work
with the file cancer reg.csv. A description of each column in this CSV file can be found in
the provided Kaggle link. Use pandas to parse and manipulate this dataset (see Part 1 for
more details).

• In your code, use comments to identify which codes correspond to answering which questions.
This will make it easier for staff to grade the coding portion. Code that is written poorly
and does not have comments to guide reader may thus lose points due to low code “read-
ability”. Note: You can complete your work in a Colab notebook and convert to a Python
file afterwards. Text cells are automatically converted to multi-line comments.

• Grading is roughly 50% report (includes correctness and presentation, i.e., writing is mostly
clear and not too many grammatical errors), 45% for code (includes ability to run, correct,
and “read-able”, i.e., should be able to be read and understood by someone who has not seen
your code before and should not contain excess comments nor commented out code), and 5%
for completing the project checkpoint.

• If you feel some group members did not sufficiently contribute to the project and caused the
overall quality to go down and do not know how to resolve it, you can privately email the
instructor to find alternative grading guidelines.

To get you started, you may refer to the following starter code with hints:

https:

//colab.research.google.com/drive/1flo0v2zzah4-2UA3Ro5e84VlEDAQZO_F?usp=sharing.

Questions

1. (30 points) This question is about downloading, inspecting, parsing, and cleaning data.
Download the cancer dataset from Kaggle and extract the cancer reg.csv file. Then using
pandas, complete the following steps:

(a) The dataset has several attributes, which can be split into labels, data/features, and
neither. Suppose we want our label to be the “Average number of cancer cases diagnosed
annually” and we want data/features containing a single numerical value that is not
directly related to the number of deaths or diagnoses of cancer. Explain which attributes
you will then remove, and for each give a short (at most one sentence) explanation.

(b) Extract the label and data/features into a vector y and matrix X, respectively. X should
have the same number of rows as elements in y.

(c) Print out how many values are missing or invalid values (i.e., NaNs) in X.

(d) Apply data imputation to those missing/invalid values in X automatically using Pandas.
To do so, read the following documentation (https://tinyurl.com/mr4ph7n6) and
decide which method can best adaptively fill in missing data. Explain your rationale for
this choice, and apply it. If there are still any missing data after this first round of data
imputation, manually fill in the data using your own method/statistic, and explain the
rationale behind it.

3

https://colab.research.google.com/drive/1flo0v2zzah4-2UA3Ro5e84VlEDAQZO_F?usp=sharing
https://colab.research.google.com/drive/1flo0v2zzah4-2UA3Ro5e84VlEDAQZO_F?usp=sharing
https://tinyurl.com/mr4ph7n6


(e) Split the data-label pair into a training-testing split with a ratio of 80:20. Use the
function train test split from scikit-learn.

2. (10 points) Formulate the ridge regression problem as an optimization problem. In particular,
use the mean square error as the objective, where we divide by the objective by the number of
data points (this coincides with PyTorch’s MSE loss function: https://docs.pytorch.org/
docs/stable/generated/torch.nn.MSELoss.html). Clearly define and explain the meaning
for the variables, objectives, constraints (if any), and data. Then find the “theoretically best
step size” for this problem when solving using gradient descent (GD).

3. (20 points) Solve the optimization problem with GD, i.e., using full gradients. Implement
the algorithm in PyTorch using the step size from Part 2. Limit the run to 5000 training
iterations, and compute the testing error (mean square error, or MSE) every 100 iterations.
Include in your report the total runtime and plot the testing error progression similarly to in
class, where the y-axis is on a log scale. This will serve as our baseline.

Hint: Regularization can be incorporated in the optimizer with weight decay (see: https:
//docs.pytorch.org/docs/stable/generated/torch.optim.SGD.html).

4. (20 points) We will now use a nonlinear model. Repeat Part 3 but only run for 2000 iterations
and use a 5-layer neural network, where

• The first layer, which is also the input layer, is linear with output dimension 64

• The second layer is a ReLU activation function

• The third layer is a linear layer where both the input and output dimension are 64

• The fourth layer is a ReLU activation function

• The fifth (and final) layer is a linear layer with output dimension 1

Use the default parameters for everything, and do not include regularization in the optimizer.
When you finish, you may notice the performance is not good. Instead of including a plot,
inspect the testing error, and explain what you see. Provide an explanation for the phenomena
you see.

Hint: https://machinelearningmastery.com/exploding-gradients-in-neural-networks/.

5. (30 points) To improve performance, we will apply a very basic hyperparameter tuning in this
problem. Using the same model from Part 4 but only for a shorter training duration of 500
iterations, exhaustively try all combinations of the following:

• Optimizer: Between SGD and Adam (see: https://docs.pytorch.org/docs/stable/
optim.html). Make sure these methods are accessing the full gradient.

• Initialization: Use either normal and orthogonal to initialize the weights (see: https:
//docs.pytorch.org/docs/stable/nn.init.html). In both cases, set the bias to zero.

• Step size: Three step sizes (i.e., learning rates): the default value, a choice at least 10X
larger than the default value, and a choice at least 10X smaller than the default value.

• Gradient clipping/normalization: Using gradient clipping (with max norm=1.0)
and no clipping (see: https://docs.pytorch.org/docs/stable/generated/torch.nn.
utils.clip_grad_norm_.html).

4

https://docs.pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://docs.pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://docs.pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://docs.pytorch.org/docs/stable/optim.html
https://docs.pytorch.org/docs/stable/optim.html
https://docs.pytorch.org/docs/stable/nn.init.html
https://docs.pytorch.org/docs/stable/nn.init.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html


In total, there are 24 different configurations to choose from. Enumerate through all possible
configurations with a single for loop (Hint: use the Python package itertools to help form
all combinations). After running all 24 configuration, report the final testing error from each
(you do not need to evaluate the testing error every 100 iterations like in Part 3). Which
hyperparameters seemed to have the most impact of performance and which did not?

6. (5 points) Repeat Part 4 with the best set of hyperparameters from the previous part. Also
plot the convergence like we did in Part 3. Compare the testing error convergence to Part 3.
Is it better or worse?

7. (10 points) There are many other potential hyperparameters we could tune. Find at least 5
other hyperparameters in PyTorch we could tune (and a couple details about what they do).
Provide links to documentation detailing each of your listed hyperparameters. Also, name a
tuning library that can automate the tuning process for us.

8. (10 points) To speedup performance, repeat Part 6 but now implement with stochastic gradient
descent (SGD) as described in class. Since SGD involves randomness, seed your
algorithm before every run to ensure consistent performance. Compare the runtime
difference between GD and SGD as well as their convergence.

9. (5 points) Another way to speedup performance is to use hardware accelerators. Similar to
the previous part, repeat Part 6 but run on a GPU (e.g., a free T4 GPU on Google Colab).
Compare the runtime between CPU GD and GPU GD.

10. (10 points) Looking at the all the methods we considered, we notice none of these methods
are able to achieve 0 training nor testing error. In your own words, describe some reasons for
why this may be the case.

5


