ISyE4133: Advanced Optimization
Project #1: Circuit Design

Checkpoint: May 30 (11:59pm EST) Project: Jun 11 (11:59pm EST)

Adapted from previous projects by Drs. Mathieu Dahan and Johannes Milz.

Problem Description

The traveling salesman problem (TSP) is a fundamental problem from combinatorial optimization
that has several real-world routing applications, including transportation, DNA sequencing, as-
tronomy, and circuit design. Formally, we are given an undirected graph G = (V| E), an arbitrary
starting vertex vs € V, and a set of edge weights w : E'— R>g. The goal is to find a tour starting
at vs € V (i.e., a route that starts and ends at v, and visits each node in V' exactly once) and this
tour should be the shortest path tour in terms of the cumulative edge weights.

Below, we give a preview of applying TSP towards the circuit design problem. Given a set of
locations we want to drill holes (i.e. nodes), we want to determine the most efficient drilling route.
In particular, in this problem we will work with 280 node graph, representing 280 drill holds. The
file, a280.tsp.gz, can be downloaded from here

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/.

In the image below, one feasible drilling route is shown, where the thin black lines represents the
route the drill can take. For more details, see this tutorial: https://developers.google.com/
optimization/routing/tsp.

Circuit drilling route

200 A

150 4

100 +

50+

T T T T T T T
0 50 100 150 200 250 300

Figure 1: Circuit drilling route. Blue circles are nodes or holes while black lines are the route.

One can see this problem can be formulated as a TSP problem, and as shown in class, can be
formulated as a integer (possibly mixed-integer linear) program. However, there are an exponential


http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp

number of routes, so direct enumeration is impossible. In this project, we will discuss ways we can
solve this seemingly intractable integer program using different formulations and Gurobi callbacks.
Students will:

1.

2.

3.
4.

Utilize basic I/O tools to interact with problem specific files
Practice basic visualization of graph problems
Learn a couple mixed integer linear programming (MILP) formulations of TSP

Implement callbacks with Gurobi for improving and monitoring performance for a MILP solver

Submission Instructions

e Please upload:

1. A single typed PDF report with your answers (when applicable) to the questions below.
Moreover, all plots in your report must be digitally created with a clear and appropriate
title, x and y-axis label, several x and y-axis tick labels', and a legend when appropriate.
Your submission should also contain a brief paragraph explaining the contribution of
each member.

2. Python code. Your code must be able to run if we directly copy and paste the contents
into a Jupyter/Colab notebook. Code that does not run may automatically receive
a zero for the code portion®. You can assume when I run the code, I have a local
copy of a280.tsp available and a full Gurobi license.

e Outside references, including generative Al are allowed. But the submitted work must be one’s

own original work and effort. Use of outside reference must be properly cited, i.e., name of the
reference, a link to the reference (if possible), and how the reference was used. Collaborations
are only permitted within the group.

File Directory Structure

Your submission should consist of one PDF and one Python file. I will assign each group a number
when they submit the project checkpoint. When archiving your Python files and preparing your
PDF report, please use the following file directory structure for your submission:

report_group_<group_number>.pdf

code_group_<group-number>.py

For example, report_group_<group number>.pdf should be submitted as report_group_1.pdf if
your group number is 1. You may lose a small number of points if your submission does not adhere
to this format.

Matplotlib will usually have these automatically generated.
2T will try to be lenient for small bugs due to issues between running code on different machines.



Details

e Use the dataset described in the “Problem Description” section. In particular, we will work
with the file a280.tsp. Within the file, you will notice about 6 lines of the file description,
followed by a sequences of lines containing 3 integer values each. The first is the node id, the
second and third are the x- and y-coordinate of the corresponding node. The library tsplib95
will automatically parse this for you.

e In your code, use comments to identify which codes correspond to answering which questions.
This will make it easier for staff to grade the coding portion. Code that is written poorly
and does not have comments to guide reader may thus lose points due to low code “read-
ability”. Note: You can complete your work in a Colab notebook and convert to a Python
file afterwards. Text cells are automatically converted to multi-line comments.

e Since we will not cover mixed integer linear programming and TSP until the second week of
Unit 2, Canvas will contain some lectures on TSP formulations from previous courses and
basic code for invoking callbacks within Gurobi as a guideline.

e When the MIP gap is mentioned, we refer to the same relative MIP gap Gurobi uses. See https:
//support.gurobi.com/hc/en-us/articles/8265539575953-What-is-the-MIPGap.

e If you run your code on Colab, the free license may not be sufficient. Refer to HW#1 on
instructions to get the full license.

e Grading is roughly 50% report (includes correctness and presentation, i.e., writing is mostly
clear and not too many grammatical errors), 45% for code (includes ability to run, correct,
and “read-able”, i.e., should be able to be read and understood by someone who has not seen
your code before and should not contain excess comments nor commented out code), and 5%
for completing the project checkpoint.

o If you feel some group members did not sufficiently contribute to the project and caused the
overall quality to go down and do not know how to resolve it, you can privately email the
instructor to find alternative grading guidelines.

To get you started, you may refer to the following starter code with hints:

https:
//colab.research.google.com/drive/1agEELNnmHCsUCz2fPmtuViBS04qVVfd0?usp=sharing

Additionally, since we will not cover TSP nor callbacks until the middle of Week 4, you can find
previous notes on TSP formulations and high-level details on callbacks for lazy constraints. These
will be on Canvas under files/lecture unfilled.

Questions

1. (10 points) Using the library tsplib95 (src: https://tsplib95.readthedocs.io/en/stable/
index.html), load the circuit printing problem data a280.tsp.gz and plot the circuit drill
holes (without the routes) similarly to Figure 1. Put the plot in your report. The plot should
be a scatter plot with clearly labeled X and Y-axes with tick values, plus a title.

Hint: You may need to access the node_coords attribute of the TSP problem object.


https://support.gurobi.com/hc/en-us/articles/8265539575953-What-is-the-MIPGap
https://support.gurobi.com/hc/en-us/articles/8265539575953-What-is-the-MIPGap
https://colab.research.google.com/drive/1agEELNnmHCsUCz2fPmtuViBS04qVVfdO?usp=sharing
https://colab.research.google.com/drive/1agEELNnmHCsUCz2fPmtuViBS04qVVfdO?usp=sharing
https://tsplib95.readthedocs.io/en/stable/index.html
https://tsplib95.readthedocs.io/en/stable/index.html

10.

. (10 points) Formulate the TSP the problem but without any type of subtour elimination

constraints. Clearly identify and explain the variables, objective, constraints, and data. In
particular, explain how you will construct the data for the TSP problem using the TSP file.

. (15 points) Design a heuristic method that does not require solving a mixed integer linear

program (MILP) for approximately solving TSP. Write pseudocode (not a screenshot of your
code) that clearly explains how to find this approximate solution.

Hint: Consider a greedy approach.

. (15 points) Implement your method from the previous part. Afterwards, complete the following:

e Plot the circuit drilling route on top of the circuit drilling holds from Part 1.

e Print out and put in your report the final objective value and total runtime.

(15 points) Implement the TSP formulation with Miller-Tucker-Zemlin (MTZ) constraints as
described in class. Solve with Gurobi with a time limit of 10 minutes or until optimality. Then

e Plot the circuit drilling route on top of the circuit drilling holds from Part 1.

e Print out and put in your report the final objective value, MIP gap, and total runtime.

. (20 points) Repeat Part 5 but without a time limit. Instead, implement a callback to early

stop the solver when the relative MIP gap falls below 50%, 20%, and 5%.
In addition, provide a qualitative comparison between the route provided at each checkpoint.

Note: When solving the MILP multiple times, make sure to remake the Gurobi model between
solves. This is because Gurobi may save the solution and warm-start the solver with the
previous solution if the Guorbi model is unchanged.

(15 points) Recall the subtour elimination constraints. We call a subtour undesirable if it does
not visit all nodes. Write a pseudocode (not a screenshot of your code) that clearly explains
how to determine if your current solution contains an undesirable subtour. If it does, your
pseudocode should output the undesirable subtour.

(25 points) Repeat Part 5 but use subtour elimination (together with your pseudocode for
subtour detection in the previous part) with lazy constraints via callbacks in Gurobi. What
do you notice in runtime performance between MTZ constraints and lazy constraints?

. (10 points) Due to technical issues in the circuit printer, the route cannot include any edges

that move vertically along the column = = 104 (i.e., an edge between two nodes that share the
same x-coordinate of y = 104). Explain what constraints you will add to the TSP formulation
to avoid such routes.

(15 points) Repeat Part 8 but include the modifications to avoid routes that use edges vertically
along column z = 104. What do you notice in runtime performance compared to Part 87
Provide one possible reason for this phenomena.

Hint: Your reasoning does not need to be too complicated nor require deep knowledge of
combinatorial /discrete optimization.



