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Abstract
The recent popularity of convolutional neural networks have motivated the study of convolution without us-
ing the fast Fourier transform. While alternatives, like the Winograd minimal filtering and Toom-Cook method,
have been proposed, there 1s little work in the mathematical definition and numerical analysis of these algo-
rithms. In this survey, we use the framework of bilinear algorithms to introduce the various methods. We
provide novel stability bounds and propose methods to mitigate the error.

Introduction

Convolution:
e Calculates the interaction of two functions to create a third function
e Used 1n integer multiplication, signal processing, and solutions to PDEs

e Key component (< 90% runtime [1]) in convolutional neural networks (CNN)
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Figure 1: CNN Architecture

Unlike other problems, CNN’s use of convolution has:

e Small to medium filter sizes

e Many convolutions for one image

e Larger errors can be tolerated depending on CNN design

Blackbox algorithms today are,
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Main Objectives

1. Introduce algorithms via bilinear algorithms, compare pros and cons

2. Bound and reduce errors of various algorithms

Convolution as a bilinear algorithm

Discrete linear convolution: given inputs f € R and g € R”, their convolution is computed by
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Can be computed by Hankel matrix multiplication,
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We can cast the problem as a bilinear algorithm,

y=>S(fg) = C(AfGDBg)-
1. Toom-Cook method.

e Interpolation problem. Evaluate — evaluate — multiply — interpolate.

e Set matrices A,B, and C' to Vandermonde matrices and its inverse,

i —1
p§ pé Dy
Voo | PP
) = | & e
0 n—1
Dy o e Pn_1

usingnodes p= [0 1 —1 ...].
Advantage: Easy to derive, good for small filters
Disadvantage: Expensive and inaccurate if filters too large

2. Winograd minimal filtering method. Like Toom-Cook, except:

e Evaluate remainder instead of full polynomials
e Use Chinese Remainder Theorem instead of interpolation

Advantage: Cheaper overhead of evalutation and interpolation
Disadvantage: Difficult to derive. As inaccurate as Toom-Cook
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3. r-tap algorithms. Useful when the input is larger than filter. Given convolution algorithm

y = C(Af ® Bg), the respective r-tap algorithm is

y = AT ((CTF) @ (Bg)). (5)
The representation 1s a full-Hankel matrix, 1.e. no zero terms,
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Same advantages and disadvantages as Toom-Cook
4. Discrete and Fast Fourier Transform. Toom-Cook with nodes p = [w’] fori =0,1,...,n—1.

Advantage: Easy to derive, O(nlog(n)), accurate
Disadvantage: Expensive for small filters

Bounds and Reduction of Error

To reduce error, improve conditioning of the matrices. We propose:

1. Break convolution into short ones by Kronecker products (nested)

2. Better nodes, like Chebyshev nodes p; = cos(zéglﬂ)

3. Use orthogonal basis like Chebyshev basis. Has unconditional stability
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Method Error Bounds
Toom-Cook () ((”T_l)n / \/ﬁ)
Nested Toom-Cook (nklogk( [k=1]/2)=1/ %)
Toom-Cook Chebyshev Nodes (<1+\/\§>n)

€

()
Toom-Cook Chebsyehv Basis | O(1)
DFT/FFT O(1)

Table 1: Error Bounds

Experimental Results
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Figure 2: Error of convolution on random 2D matrices

From the graph, we can see it supports our original bounds.
1. Long convolutions broken down to a series of many short convolutions are very stable
2. Chebyshev nodes can extend the use of the Vandermonde matrices

3. Toom-Cook 1s unusable after sizes of eight, and the Chebyshev basis 1s unconditionally stable

Concluding Remarks and Future Directions

e CNNs have efficient algorithms for small filters (Winograd and Toom-Cook) and large filters
(FFT), however the decision 1s non-trivial for medium size filters

e Use of general algorithms can help design more stable ones for any input size and help compare
speed and accuracy trade-offs

e For future works, implement these algorithms for 2D and 3D convolution algorithms on super-
computers and/or GPUs and derive communication bounds for nested bilinear algorithms
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