
Solving Positive LPs in Parallel using the Multiplicative
Weights Update (MWU)

Caleb Ju and Navjot Singh

UIUC Parallel Graph Reading Group

October 8, 2020

Caleb Ju and Navjot Singh MWU for LPs October 8, 2020 1 / 48



Overview

1 Definition and Applications

2 MWU For Solving Packing LPs

3 Experimental Results

Caleb Ju and Navjot Singh MWU for LPs October 8, 2020 2 / 48



Definitions

LPs

Let A ∈ Rm×n, b,∈ Rn, and c ∈ Rm. LP is

max 〈c , x〉
s.t. Ax{≤,=,≥}b.

Used to solve maximum graph matchings, set cover, solutions to linear
systems, network flow, discrete optimal transport, ...
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Definitions

Positive LPs

Let A ∈ Rm×n
+ , b,∈ Rn

+, and c ∈ Rm
+. Packing LP is

max 〈c , x〉
s.t. Ax ≤ b

x ≥ 0.

Maximum Matching

Given a graph G = (V ,E ), find largest cardinality F ⊆ E such that
∀v ∈ V is incident to at most one edge in F .

max
∑
e∈E

xe s.t.
∑

e∈inc(v)

xe ≤ 1 ∀v ∈ V

x ≥ 0.
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Graph Matching



Positive LPs

Let A ∈ Rm×n
+ , b,∈ Rn

+, and c ∈ Rm
+. Covering LP is

min 〈c, x〉
s.t. Ax ≥ b

x ≥ 0.

Dominating Set

Given a graph G = (V ,E ), find the smallest subset D ⊆ V then ∀v ∈ V
s.t.

(
{v} ∪ N(v)

)
∩ D 6= Ø.

min
∑
v∈V

xv s.t.

xv +
∑

u∈N(v)

xu ≥ 1 ∀v ∈ V

x ≥ 0.
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Dominating Set



Positive LPs

Positive LPs

Let P,C ∈ Rm×n
+ , b, c ∈ Rm

+. Mixed Packing Covering LP is

∃x
s.t. Px ≤ b

Cx ≥ c

x ≥ 0.

Solving a Positive Linear System of Equations

Find x s.t. Ax = b

∃x s.t. Ax ≤ b

Ax ≥ b

x ≥ 0.

Caleb Ju and Navjot Singh MWU for LPs October 8, 2020 8 / 48



Positive LPs

Positive LPs

Let P,C ∈ Rm×n
+ , b, c ∈ Rm

+. Mixed Packing Covering LP is

∃x
s.t. Px ≤ b

Cx ≥ c

x ≥ 0.

Solving a Positive Linear System of Equations

Find x s.t. Ax = b

∃x s.t. Ax ≤ b

Ax ≥ b

x ≥ 0.

Caleb Ju and Navjot Singh MWU for LPs October 8, 2020 8 / 48



Simplex Method

Looks at all adjacent boundary pts in the feasibility region

Exact solution

Requires feasible initial guess

Exponential time
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IPM Intuition

IPM visualised as barrier method for inequality constraints

max
x

cT x + µ1 log
∑
i

(bi − aTi x) + µ2 log
∑
j

xj

where ai is the i th row of A

Uses Newton’s iteration to compute steps

Expensive as requires solve
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MWU Intuition

Can we do something cheaper?

Look at subclass of LP problems with special properties... ?

Contribution of each step depends on closeness to violation

Above observation with positivity constraints resulted in MWU
algorithm

Used as exponentiated gradient descent in solving KL-div objective

Caleb Ju and Navjot Singh MWU for LPs October 8, 2020 11 / 48



Methods for Solving Positive LPs

(Normal) Packing LP

Let A ∈ Rm×n
+ Normal Packing LP is

max 〈c, x〉 s.t. Ax ≤ b, x ≥ 0

→ max 〈1, x〉 s.t. Ax ≤ 1, x ≥ 0.

Approximation

A positive LP produces an ε-approximation answer if

1Tx ≥ OPT and Ax ≤ (1 + ε)1
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Methods for Solving Positive LPs

Approximate (Normal) Packing LP

Let A ∈ Rm×n
+ Normal Packing LP is

Find x s.t. 〈1, x〉 ≥ OPT and Ax ≤ (1 + ε)1, x ≥ 0.

How to solve quickly, accurately, and in parallel?

Simplex algorithm: Exact but exponential

Interior point: O(n3k) where k is the number of iterations

Approximately with MWU:

1 sequentially in O(polylog(n)N/ε) time where N = nnz(A)
2 in O(log(m) log(n/ε)/ε2) iterations in parallel
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MWU Framework

Recall A ∈ Rm×n
+

Optimization Problem (Packing LP)

Solve max〈1, x〉 s.t. Ax ≤ 1, x ≥ 0

Find x such that 1Tx ≥ OPT,Ax ≤ (1 + ε)1

1 x ← 0n, η ← log(m)/ε

2 Initialize weights equally w ← 1
m1m

3 Solve Lagrangian relaxation, max〈1, d〉 s.t. wTAd ≤ wT1, d ≥ 0
4 Increment x ← x + δ · d for small δ

5 Update weights, wi = wi · exp(η · Aid) ∀i
6 If constraints are not tight, go to step (3)
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Solving Lagrangian Relaxation

Lagrangian relaxation

max〈1, d〉 s.t. wTAd ≤ wT1, d ≥ 0.

Knapsack

Equivalent to

max〈1, d〉 s.t.
〈 ATw

〈1,w〉︸ ︷︷ ︸
g

, d
〉
≤ 1, or

max d1 + . . .+ dn

s.t. g1 · d1 + . . .+ gn · dn ≤ 1.

Set d = ei s.t. i = argminjgj .
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MWU Framework
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= ε
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Lemma

Step (3) is called at most O(m · η/ε) = O(m log(m)/ε2) times.
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MWU Example

Consider LP max x1 + x2 [
2 1
1 3

] [
x1
x2

]
≤
[

1
1

]
.

where x∗ =
(
2/5 1/5

)T
. Choose ε = 0.1.

(1,2): Initialize x ← 0, w ← 1
21, η ← 10

(3): Solve the Lagrangian, argmin wTA
1Tw

=
(
1.5 2

)
. Set d = e1

(4): Increment x ← x + 1
4d =

(
1
4 0

)T
(5): Update weights,

[
w1

w2

]
=

[
w1

w2

]
� exp

(
ηAd

)
≈
[
w1

w2

]
�
[

9
1

]
(3): Solve the Lagrangian, argmin wTA

1Tw
=
(
19
10

12
10

)
. Set d = e2

. . .
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MWU Example
Consider standard LP with m = 3 constraints and n = 2 vars.
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MWU Framework

Find x such that x ≥ OPT,Ax ≤ (1 + ε)1

1 1Tx ← 0n, η ← log(m)/ε

2 Initialize weights equally w ← 1
m1m

3 Set d = ei where i = argminj gj (Lagrangian relaxation)

4 Increment x ← x + δ · d s.t. δ ·maxi
(
η · Aid

)
= ε

5 Update weights, wi = wi · exp(η · Aid) ∀i
6 If constraints are not tight, go to step (3)

Sequential → Parallel

How can we parallelize this (i.e., increase multiple coordinates
simultaneously)?
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Parallelizing MWU

Lagrangian Relaxation

Equivalent to

max〈1, d〉 s.t.
〈 ATw

〈1,w〉︸ ︷︷ ︸
g

, d
〉
≤ 1, , d ≥ 0.

Sequentially, set d = ei s.t. i = argminjgj .
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Parallelizing MWU

Lagrangian Relaxation

Equivalent to

max〈1, d〉 s.t.
〈 ATw

〈1,w〉︸ ︷︷ ︸
g

, d
〉
≤ 1, , d ≥ 0.

Sequentially, set d = ei s.t. i = argminjgj Set

di =

{
f
(
g−1i

)
or 1− f

(
gi
)

: gi < (1 + ε)gmin

0 : gi ≥ (1 + ε)gmin

.
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MWU Framework

1 x > 0 s.t. Ax ≤ ε, η ← log(m)/ε, M ← (1− ε)OPT
2 Initialize weights equally* w ← 1

m1m

3 Set ∆i = max
{

0, 1− giM} (Lagrangian relaxation)

4 Increment x ← x+ η−1x �∆︸ ︷︷ ︸
d

5 Update weights, wi = wi · exp(η · Aid) ∀i
6 If constraints are not tight, go to step (3)

*Technically, set w = exp(ηAx)

Lemma (Fake)

Each iteration satisfies the invariant**,

〈1, d〉
max(Ax (new))−max(Ax (old))

≥ M.

**Hard to analyze since max is not smooth
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MWU Framework

1 xi ← ε
n·‖A:,i‖ ∀i ∈ [n], η ← log(m)/ε, M ← (1− ε)OPT

2 Initialize weights equally w ← 1
m1m

3 Set ∆i = max
{

0, 1− giM} (Lagrangian relaxation)

4 Increment x ← x + η−1x �∆︸ ︷︷ ︸
d

5 Update weights, wi = wi · exp(η · Aid) ∀i
6 If constraints are not tight, go to step (3)

Lemma

Each iteration satisfies the invariant,

〈1, d〉
smax(Ax (new))− smax(Ax (old))

≥ M.
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Parallelizing MWU

Lemma

The algorithm converges in O(log(m) log(n/ε)/ε2) iterations.

Lemma

The algorithm converges to x s.t. max(Ax) ≤ smaxη(Ax) ≤ 1.

Lemma

The algorithm converges to x s.t. 〈1, x〉 ≥ M.
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MWU Framework

Recap

Approximately solve special LPs using MWU up to error ε

Reduce “hard” LP into series of ”easy” LPs via Lagrangian relaxation

Parallelize by doing more work simultaneously
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Experimental Results

Implemented in Python using sparse matrices (scipy). Run parallel LP
solver (denote as Alina’s alg) on personal laptop (2.3 GHz Dual-Core Intel
i5, 8GB of memory) to solve:

Maximum matchings (packing LP)*

Dominating set (covering LP)

Compare with other par/seq. LP solvers:

Mahoney et al* mixed-PC LP solver

Kent’s sequential solver*

Also run against general optimization libraries:

CPLEX*

CVXOPT

MS-BFS-Graft (for bipartite graph matchings)

*Results included in these slides
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Problem Definition

Maximum Matching

Given a graph G = (V ,E ), find largest cardinality F ⊆ E such that
∀v ∈ V is incident to at most one edge in F .

max
∑
e∈E

xe s.t.∑
e∈inc(v)

xe ≤ 1 ∀v ∈ V

x ≥ 0.
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Iteration Count Comparison



Iteration Count Growth Comparison



Experimental Results

Table: CPLEX vs. ParPacLP runtime and iteration count for graph matching with
ε = 0.1. Breakdown is (matvec,vecop)

Problem CPLEX LP LP Arith. LP Iters
bi 20 30 0.0s 0.445s (0.18s,0.12s) 2215

bi 200 300 0.45s 4.73s (1.73s,1.70s) 4350
bi 800 1000 1.66s 106s (40.3s,45.1s) 5800
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Increasing Step Sizes (Safely)

Can we take larger steps?

Is the step size,

d = η−1(x �∆)

too conservative?

Solution is optimal (i.e., 〈1, x〉 ≥ M) as long as

〈1, x + d〉 − 〈1, x〉
smaxη

(
A(x + d)

)
− smaxη

(
Ax
) =

〈1, d〉
δt

≥ M
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Increasing Step Sizes (Safely)

Can we take larger steps?

Is the step size,

d = η−1(x �∆)

too conservative?

Solve line search: maxα s.t.

α〈1, d〉
smaxη

(
A(x + α · d)

)
− smaxη

(
Ax
) ≥ M

max
(
A(x + α · d)

)
≤ 1.

Binary search over α.

Caleb Ju and Navjot Singh MWU for LPs October 8, 2020 44 / 48



Table: CPLEX vs. ParPacLP+BS runtime and iteration count for graph matching
with ε = 0.1. Breakdown is (matvec,vecop,BS)

Problem CPLEX LP LP Arith. LP Iters
bi 800 1000 1.66s 0.26s (0.1,0.1,0.0) 1

bi 2000 3000 17.52s 1.93s (0.6,0.7,0.4) 8
A 2000 10 0.46s 0.07s (0.0,0.0,0.0) 17

A 10000 16 38.17s 1.54s (0.4,0.6,0.3) 16
wiki-Vote 0.44s 0.18s (0.0,0.0,0.1) 25

amazon0312 1766.7s 23.6s (6.2,5.5,9.8) 52
web-Google 173.2s 50.0s (14.6,9.9,21.8) 49
cit-Patents 8171.5s 306s (88.8,78.0,118) 62

Table: Dimensions of graphs from SuiteSparse

Problem m n nnz

wiki-Vote 1.7e4 2.1e6 4.1e5
amazon0312 8.0e5 6.4e6 1.3e7
web-Google 1.8e6 1.0e7 2.0e7
cit-Patents 7.5e6 3.3e7 6.6e7
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Experimental Results



Next Steps and Questions

Binary step search takes the most time. Find ways to reduce the time.

Without M, we need binary search to approximate OPT. Can we
avoid/reduce this overhead?

The parallel algorithm spends majority of time in initial stages. Can
we accelerate this?

Pair/couple LP with another LP solver that is fast in the beginning

Solving an “easier” problem (subset of constraint, loosen constraints,
etc.)

Tuning opportunities

Introduce ε1, ε2 where M = (1− ε1)OPT and ε← ε2

We can incorporate “easier” problem’s solution by scaling down.
Opportunities to trade-off how much time is spent in “easier”
problem vs. parallel LP.
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