Solving Positive LPs in Parallel using the Multiplicative Weights Update (MWU)

Caleb Ju and Navjot Singh

UIUC Parallel Graph Reading Group

October 8, 2020

LPs

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}^m$. LP is

$$\max \langle c, x \rangle$$

s.t. $Ax \{ \leq, =, \geq \} b.$

Used to solve maximum graph matchings, set cover, solutions to linear systems, network flow, discrete optimal transport, ...

Definitions

Positive LPs

Let $\mathbf{A} \in \mathbb{R}^{m \times n}_+$, $b \in \mathbb{R}^n_+$, and $c \in \mathbb{R}^m_+$. Packing LP is

 $\begin{array}{l} \max \ \langle c, x \rangle \\ \text{s.t.} \ \ \boldsymbol{A} x \leq b \\ x \geq 0. \end{array}$

Maximum Matching

Given a graph G = (V, E), find largest cardinality $F \subseteq E$ such that $\forall v \in V$ is incident to at most one edge in F.

Definitions

Positive LPs

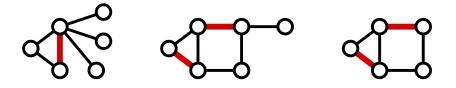
Let $\mathbf{A} \in \mathbb{R}^{m \times n}_+$, $b \in \mathbb{R}^n_+$, and $c \in \mathbb{R}^m_+$. Packing LP is

 $\begin{array}{l} \max \ \langle c, x \rangle \\ \text{s.t.} \ \ \boldsymbol{A} x \leq b \\ x \geq 0. \end{array}$

Maximum Matching

Given a graph G = (V, E), find largest cardinality $F \subseteq E$ such that $\forall v \in V$ is incident to at most one edge in F.

$$\begin{split} \max \sum_{e \in E} x_e \text{ s.t. } & \sum_{e \in \mathsf{inc}(v)} x_e \leq 1 \; \forall v \in V \\ & x \geq \mathbb{O}. \end{split}$$



Positive LPs

Let $\mathbf{A} \in \mathbb{R}^{m \times n}_+$, $b, \in \mathbb{R}^n_+$, and $c \in \mathbb{R}^m_+$. Covering LP is

 $\min \langle c, x \rangle \\ \text{s.t. } \mathbf{A} x \ge b \\ x > 0.$

Dominating Set

Given a graph G = (V, E), find the smallest subset $D \subseteq V$ then $\forall v \in V$ s.t. $(\{v\} \cup N(v)) \cap D \neq \emptyset$.

Positive LPs

Let $\mathbf{A} \in \mathbb{R}^{m \times n}_+$, $b, \in \mathbb{R}^n_+$, and $c \in \mathbb{R}^m_+$. Covering LP is

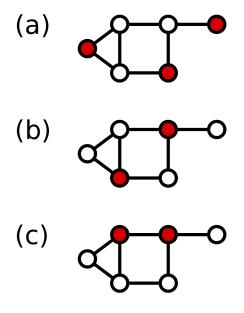
 $\min \langle c, x \rangle \\ \text{s.t. } \mathbf{A} x \ge b \\ x > 0.$

Dominating Set

Given a graph G = (V, E), find the smallest subset $D \subseteq V$ then $\forall v \in V$ s.t. $(\{v\} \cup N(v)) \cap D \neq \emptyset$.

$$\min \sum_{v \in V} x_v \text{ s.t.}$$
$$x_v + \sum_{u \in N(v)} x_u \ge 1 \ \forall v \in V$$
$$x \ge 0$$

Dominating Set



Positive LPs

Positive LPs

Let $P, C \in \mathbb{R}^{m \times n}_+$, $b, c \in \mathbb{R}^m_+$. Mixed Packing Covering LP is

 $\exists x$ s.t. $Px \le b$ $Cx \ge c$ $x \ge 0.$

Solving a Positive Linear System of Equations

Find x s.t. Ax = b

Positive LPs

Positive LPs

Let $P, C \in \mathbb{R}^{m \times n}_+$, $b, c \in \mathbb{R}^m_+$. Mixed Packing Covering LP is

 $\exists x$ s.t. $Px \le b$ $Cx \ge c$ $x \ge 0.$

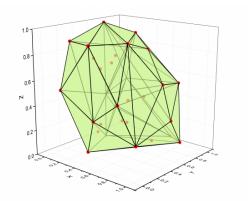
Solving a Positive Linear System of Equations

Find x s.t. Ax = b

$$\exists x \text{ s.t. } \mathbf{A} x \leq b$$
$$\mathbf{A} x \geq b$$
$$x \geq 0.$$

Simplex Method

- Looks at all adjacent boundary pts in the feasibility region
- Exact solution
- Requires feasible initial guess
- Exponential time



IPM visualised as barrier method for inequality constraints

$$\max_{x} c^{T} x + \mu_1 \log \sum_{i} (b_i - a_i^{T} x) + \mu_2 \log \sum_{j} x_j$$

where a_i is the i^{th} row of A

- Uses Newton's iteration to compute steps
- Expensive as requires solve

- Can we do something cheaper?
- Look at subclass of LP problems with special properties... ?
- Contribution of each step depends on closeness to violation
- Above observation with positivity constraints resulted in MWU algorithm
- Used as exponentiated gradient descent in solving KL-div objective

(Normal) Packing LP

Let $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$ Normal Packing LP is

$$\begin{array}{l} \max \ \langle \mathbb{c}, x \rangle \ \text{s.t.} \ \boldsymbol{A} x \leq b, x \geq 0 \\ \rightarrow \max \ \langle \mathbb{1}, x \rangle \ \text{s.t.} \ \boldsymbol{A} x \leq \mathbb{1}, x \geq 0. \end{array}$$

Approximation

A positive LP produces an ϵ -approximation answer if

 $\mathbb{1}^{\mathsf{T}} x \geq \mathrm{OPT}$ and $A x \leq (1 + \epsilon) \mathbb{1}$

Let $\mathbf{A} \in \mathbb{R}^{m \times n}_+$ Normal Packing LP is

Find x s.t. $\langle \mathbb{1}, x \rangle \geq \text{OPT}$ and $Ax \leq (1 + \epsilon)\mathbb{1}, x \geq 0$.

How to solve quickly, accurately, and in parallel?

• Simplex algorithm: Exact but exponential

Let $\mathbf{A} \in \mathbb{R}^{m imes n}_+$ Normal Packing LP is

Find x s.t. $\langle \mathbb{1}, x \rangle \geq \text{OPT}$ and $Ax \leq (1 + \epsilon)\mathbb{1}, x \geq 0$.

- Simplex algorithm: Exact but exponential
- Interior point: $O(n^3k)$ where k is the number of iterations

Let $\mathbf{A} \in \mathbb{R}^{m imes n}_+$ Normal Packing LP is

Find x s.t. $\langle \mathbb{1}, x \rangle \geq \text{OPT}$ and $Ax \leq (1 + \epsilon)\mathbb{1}, x \geq 0$.

- Simplex algorithm: Exact but exponential
- Interior point: $O(n^3k)$ where k is the number of iterations
- Approximately with MWU:

Let $\mathbf{A} \in \mathbb{R}^{m imes n}_+$ Normal Packing LP is

Find x s.t. $\langle \mathbb{1}, x \rangle \geq \text{OPT}$ and $Ax \leq (1 + \epsilon)\mathbb{1}, x \geq 0$.

- Simplex algorithm: Exact but exponential
- Interior point: $O(n^3k)$ where k is the number of iterations
- Approximately with MWU:
 - **(**) sequentially in $\mathcal{O}(\operatorname{polylog}(n)N/\epsilon)$ time where $N = \operatorname{nnz}(A)$

Let $\mathbf{A} \in \mathbb{R}^{m imes n}_+$ Normal Packing LP is

Find x s.t. $\langle \mathbb{1}, x \rangle \geq \text{OPT}$ and $Ax \leq (1 + \epsilon)\mathbb{1}, x \geq 0$.

- Simplex algorithm: Exact but exponential
- Interior point: $O(n^3k)$ where k is the number of iterations
- Approximately with MWU:
 - sequentially in $\mathcal{O}(\operatorname{polylog}(n)N/\epsilon)$ time where $N = \operatorname{nnz}(A)$
 - 2 in $\mathcal{O}(\log(m)\log(n/\epsilon)/\epsilon^2)$ iterations in parallel

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}, x \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, A x \le (1 + \epsilon) \mathbb{1}$

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}$, $x \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, Ax \le (1 + \epsilon)\mathbb{1}$

 $x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}, x \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, Ax \le (1 + \epsilon)\mathbb{1}$

$$1 x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$$

2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}, x \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, Ax \le (1 + \epsilon)\mathbb{1}$

$$1 x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$$

- 2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Solve Lagrangian relaxation, $\max(\mathbb{1}, d)$ s.t. $w^{\mathsf{T}} \mathbf{A} d \leq w^{\mathsf{T}} \mathbb{1}, d \geq 0$

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}$, $x \geq 0$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, \mathbf{A} x \le (1 + \epsilon) \mathbb{1}$

$$1 x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$$

2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$

- Solve Lagrangian relaxation, $\max(\mathbb{1}, d)$ s.t. $w^{\mathsf{T}} \mathbf{A} d \leq w^{\mathsf{T}} \mathbb{1}, d \geq 0$
- $Increment \ x \leftarrow x + \delta \cdot d \ for \ small \ \delta$

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}, x \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, \mathbf{A} x \le (1 + \epsilon) \mathbb{1}$

- $1 x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$
- 2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Solve Lagrangian relaxation, $\max(\mathbb{1}, d)$ s.t. $w^{\mathsf{T}} \mathbf{A} d \leq w^{\mathsf{T}} \mathbb{1}, d \geq 0$
- $Increment \ x \leftarrow x + \delta \cdot d \ for \ small \ \delta$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \mathbf{A}_i d) \ \forall i$

Recall $\boldsymbol{A} \in \mathbb{R}^{m imes n}_+$

Optimization Problem (Packing LP)

Solve max $\langle \mathbb{1}, x \rangle$ s.t. $Ax \leq \mathbb{1}, x \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, \mathbf{A} x \le (1 + \epsilon) \mathbb{1}$

- $1 x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$
- 2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Solve Lagrangian relaxation, $\max\langle \mathbb{1}, d \rangle$ s.t. $w^{\mathsf{T}} \mathbf{A} d \leq w^{\mathsf{T}} \mathbb{1}, d \geq 0$
- $Increment \ x \leftarrow x + \delta \cdot d \ for \ small \ \delta$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

Solving Lagrangian Relaxation

Lagrangian relaxation

$$\max\langle \mathbb{1}, d \rangle$$
 s.t. $w^{\mathsf{T}} \mathbf{A} d \leq w^{\mathsf{T}} \mathbb{1}, d \geq 0$.

Solving Lagrangian Relaxation

Lagrangian relaxation

$$\max \langle \mathbb{1}, d \rangle \text{ s.t. } w^{\mathsf{T}} \mathbf{A} d \leq w^{\mathsf{T}} \mathbb{1}, \ d \geq \mathbb{0}.$$

Knapsack

Equivalent to

$$\max \langle \mathbb{1}, d \rangle \text{ s.t. } \left\langle \underbrace{\frac{\mathbf{A}^{\mathsf{T}} w}{\langle \mathbb{1}, w \rangle}}_{g}, d \right\rangle \leq 1, \text{ or}$$
 $\max d_1 + \ldots + d_n$
s.t. $g_1 \cdot d_1 + \ldots + g_n \cdot d_n \leq 1.$

Set $d = e_i$ s.t. $i = \operatorname{argmin}_i g_j$.

Optimization Problem (Packing LP)

Solve max $\langle x, \mathbb{1} \rangle$ s.t. $Ax \leq \mathbb{1}$, $d \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge \text{OPT}, Ax \le (1 + \epsilon)\mathbb{1}$

- $x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$
- 2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Set $d = e_i$ where $i = \operatorname{argmin}_i g_i$ (Lagrangian relaxation)
- $Increment \ x \leftarrow x + \delta \cdot d \ for \ small \ \delta$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \mathbf{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

Optimization Problem (Packing LP)

Solve max $\langle x, \mathbb{1} \rangle$ s.t. $Ax \leq \mathbb{1}$, $d \geq \mathbb{0}$

Find x such that $\mathbb{1}^T x \ge OPT$, $Ax \le (1 + \epsilon)\mathbb{1}$

$$x \leftarrow \mathbb{O}^n, \ \eta \leftarrow \log(m)/\epsilon$$

2 Initialize weights equally
$$w \leftarrow \frac{1}{m} \mathbb{1}^m$$

- Set $d = e_i$ where $i = \operatorname{argmin}_i g_i$ (Lagrangian relaxation)
- $Increment \ x \leftarrow x + \delta \cdot d \ s.t. \ \delta \cdot \max_i \left(\eta \cdot \mathbf{A}_i d \right) = \epsilon$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

Find x such that $\mathbb{1}^{\mathsf{T}} x \geq \operatorname{OPT}, \mathbf{A} x \leq (1 + \epsilon) \mathbb{1}$

$$\ \, \mathbf{0} \ \, \mathbf{x} \leftarrow \mathbb{O}^n, \ \, \eta \leftarrow \log(m)/\epsilon$$

- 2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Set $d = e_i$ where $i = \operatorname{argmin}_i g_i$ (Lagrangian relaxation)
- $Increment \ x \leftarrow x + \delta \cdot d \ s.t. \ \delta \cdot \max_i \left(\eta \cdot \mathbf{A}_i d \right) = \epsilon$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

Find x such that $\mathbb{1}^{\mathsf{T}} x \geq \operatorname{OPT}, \mathbf{A} x \leq (1 + \epsilon) \mathbb{1}$

- 2 Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Set $d = e_i$ where $i = \operatorname{argmin}_i g_i$ (Lagrangian relaxation)
- $Increment \ x \leftarrow x + \delta \cdot d \ s.t. \ \delta \cdot \max_i \left(\eta \cdot \mathbf{A}_i d \right) = \epsilon$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

Lemma

Step (3) is called at most $\mathcal{O}(m \cdot \eta/\epsilon) = \mathcal{O}(m \log(m)/\epsilon^2)$ times.

MWU Example

Consider LP max $x_1 + x_2$

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

where $x^* = \begin{pmatrix} 2/5 & 1/5 \end{pmatrix}^{\mathsf{T}}$. Choose $\epsilon = 0.1$. • (1,2): Initialize $x \leftarrow 0$, $w \leftarrow \frac{1}{2}\mathbb{1}$, $\eta \leftarrow 10$ Consider LP max $x_1 + x_2$

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

where $x^* = \begin{pmatrix} 2/5 & 1/5 \end{pmatrix}^{\mathsf{T}}$. Choose $\epsilon = 0.1$.

- (1,2): Initialize $x \leftarrow \mathbb{O}$, $w \leftarrow \frac{1}{2}\mathbb{1}$, $\eta \leftarrow 10$
- (3): Solve the Lagrangian, argmin $\frac{w^T A}{\mathbb{1}^T w} = \begin{pmatrix} 1.5 & 2 \end{pmatrix}$. Set $d = e_1$

Consider LP max $x_1 + x_2$

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

where $x^* = \begin{pmatrix} 2/5 & 1/5 \end{pmatrix}^{\mathsf{T}}$. Choose $\epsilon = 0.1$.

- (1,2): Initialize $x \leftarrow \mathbb{O}$, $w \leftarrow \frac{1}{2}\mathbb{1}$, $\eta \leftarrow 10$
- (3): Solve the Lagrangian, argmin $\frac{w^T A}{\mathbb{1}^T w} = \begin{pmatrix} 1.5 & 2 \end{pmatrix}$. Set $d = e_1$
- (4): Increment $x \leftarrow x + \frac{1}{4}d = \begin{pmatrix} \frac{1}{4} & 0 \end{pmatrix}^{\mathsf{T}}$

Consider LP max $x_1 + x_2$

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

where $x^* = \begin{pmatrix} 2/5 & 1/5 \end{pmatrix}^{\mathsf{T}}$. Choose $\epsilon = 0.1$.

- (1,2): Initialize $x \leftarrow \mathbb{O}$, $w \leftarrow \frac{1}{2}\mathbb{1}$, $\eta \leftarrow 10$
- (3): Solve the Lagrangian, argmin $\frac{w^{\mathsf{T}} \mathbf{A}}{\mathbb{1}^{\mathsf{T}} w} = \begin{pmatrix} 1.5 & 2 \end{pmatrix}$. Set $d = e_1$
- (4): Increment $x \leftarrow x + \frac{1}{4}d = \begin{pmatrix} \frac{1}{4} & 0 \end{pmatrix}^{\mathsf{T}}$

• (5): Update weights,
$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \odot \exp(\eta \mathbf{A}d) \approx \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \odot \begin{bmatrix} 9 \\ 1 \end{bmatrix}$$

Consider LP max $x_1 + x_2$

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

where $x^* = \begin{pmatrix} 2/5 & 1/5 \end{pmatrix}^{\mathsf{T}}$. Choose $\epsilon = 0.1$.

- (1,2): Initialize $x \leftarrow \mathbb{O}$, $w \leftarrow \frac{1}{2}\mathbb{1}$, $\eta \leftarrow 10$
- (3): Solve the Lagrangian, argmin $\frac{w^T A}{\mathbb{1}^T w} = \begin{pmatrix} 1.5 & 2 \end{pmatrix}$. Set $d = e_1$
- (4): Increment $x \leftarrow x + \frac{1}{4}d = \begin{pmatrix} 1 \\ 4 \end{pmatrix}^{\mathsf{T}}$
- (5): Update weights, $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \odot \exp(\eta \mathbf{A} d) \approx \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \odot \begin{bmatrix} 9 \\ 1 \end{bmatrix}$
- (3): Solve the Lagrangian, argmin $\frac{w^T A}{\mathbb{1}^T w} = \begin{pmatrix} \frac{19}{10} & \frac{12}{10} \end{pmatrix}$. Set $d = e_2$

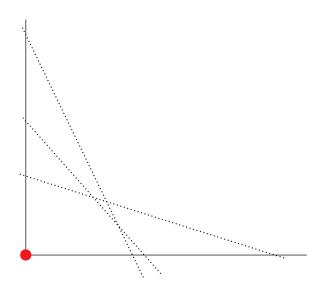
Consider LP max $x_1 + x_2$

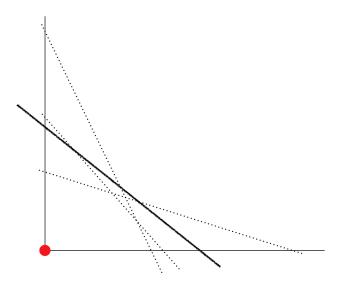
$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

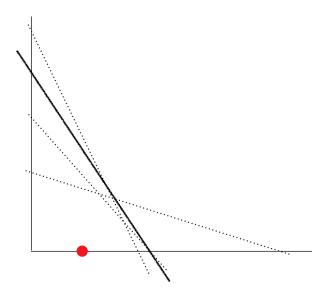
where $x^* = \begin{pmatrix} 2/5 & 1/5 \end{pmatrix}^{\mathsf{T}}$. Choose $\epsilon = 0.1$.

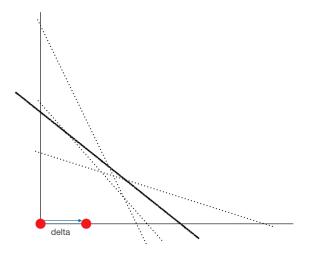
- (1,2): Initialize $x \leftarrow \mathbb{O}$, $w \leftarrow \frac{1}{2}\mathbb{1}$, $\eta \leftarrow 10$
- (3): Solve the Lagrangian, argmin $\frac{w^{\mathsf{T}} \mathbf{A}}{\mathbb{1}^{\mathsf{T}} w} = \begin{pmatrix} 1.5 & 2 \end{pmatrix}$. Set $d = e_1$
- (4): Increment $x \leftarrow x + \frac{1}{4}d = \begin{pmatrix} 1 \\ 4 \end{pmatrix}^{\mathsf{T}}$
- (5): Update weights, $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \odot \exp(\eta \mathbf{A} d) \approx \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \odot \begin{bmatrix} 9 \\ 1 \end{bmatrix}$
- (3): Solve the Lagrangian, $\operatorname{argmin} \frac{w^{\mathsf{T}} \mathbf{A}}{\mathbb{1}^{\mathsf{T}} w} = \begin{pmatrix} \frac{19}{10} & \frac{12}{10} \end{pmatrix}$. Set $d = e_2$ • ...

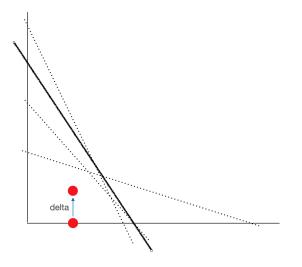
Consider standard LP with m = 3 constraints and n = 2 vars.











Find x such that $x \ge OPT$, $Ax \le (1 + \epsilon)\mathbb{1}$

$$1 T_{x} \leftarrow \mathbb{O}^{n}, \ \eta \leftarrow \log(m)/\epsilon$$

- **2** Initialize weights equally $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Set $d = e_i$ where $i = \operatorname{argmin}_i g_i$ (Lagrangian relaxation)
- $Increment \ x \leftarrow x + \delta \cdot d \ s.t. \ \delta \cdot \max_i \left(\eta \cdot \mathbf{A}_i d \right) = \epsilon$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

Sequential \rightarrow Parallel

How can we parallelize this (i.e., increase multiple coordinates simultaneously)?

Lagrangian Relaxation

Equivalent to

$$\max \langle \mathbb{1}, d \rangle \text{ s.t. } \left\langle \frac{\boldsymbol{A}^{\mathsf{T}} \boldsymbol{w}}{\langle \mathbb{1}, \boldsymbol{w} \rangle}, d \right\rangle \leq 1, , d \geq \mathbb{0}.$$

Sequentially, set $d = e_i$ s.t. $i = \operatorname{argmin}_i g_j$.

Lagrangian Relaxation

Equivalent to

$$\max \langle \mathbb{1}, d \rangle \text{ s.t. } \left\langle \underbrace{\frac{\boldsymbol{A}^{\mathsf{T}} \boldsymbol{w}}{\langle \mathbb{1}, \boldsymbol{w} \rangle}}_{\boldsymbol{g}}, d \right\rangle \leq 1, , d \geq \mathbb{0}.$$

Sequentially, set $d = e_i$ s.t. $i = \operatorname{argmin}_j g_j$ Set

$$d_i = \begin{cases} f\left(g_i^{-1}\right) \text{ or } 1 - f\left(g_i\right) & : g_i < (1+\epsilon)g_{\min} \\ 0 & : g_i \ge (1+\epsilon)g_{\min} \end{cases}$$

Parallelizing MWU

Lagrangian Relaxation

Equivalent to

$$\max \langle \mathbb{1}, d \rangle \text{ s.t. } \left\langle \underbrace{\frac{\mathbf{A}^{\mathsf{T}} w}{\langle \mathbb{1}, w \rangle}}_{g}, d \right\rangle \leq 1, , d \geq \mathbb{0}.$$

Set

$$d_i = \begin{cases} f\left(g_i^{-1}\right) \text{ or } 1 - f\left(g_i\right) & : g_i < (1+\epsilon)g_{\min} \text{ OPT}^{-1} \\ 0 & : g_i \ge (1+\epsilon)g_{\min} \text{ OPT}^{-1} \end{cases}$$

Parallelizing MWU

Lagrangian Relaxation

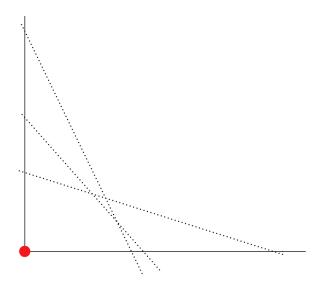
Equivalent to

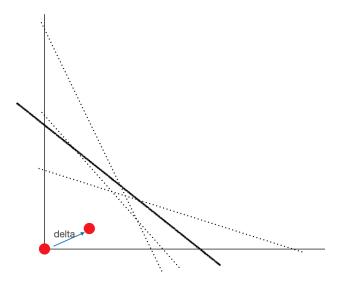
$$\max \langle \mathbb{1}, d \rangle \text{ s.t. } \left\langle \frac{\boldsymbol{A}^{\mathsf{T}} \boldsymbol{w}}{\langle \mathbb{1}, \boldsymbol{w} \rangle}, d \right\rangle \leq 1, d \geq \mathbb{0}.$$

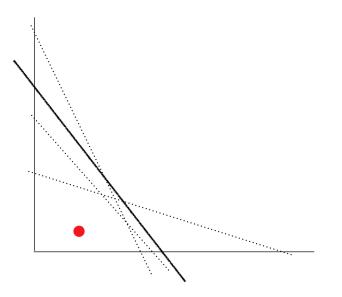
Set

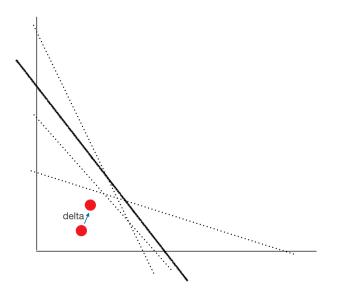
$$d_i = \begin{cases} f\left(g_i^{-1}\right) \text{ or } 1 - f\left(g_i\right) & : g_i < (1+\epsilon)g_{\min} \text{ OPT}^{-1} \\ 0 & : g_i \ge (1+\epsilon)g_{\min} \text{ OPT}^{-1} \end{cases}$$

Since $g_{\min} \cdot \mathbb{1}^T x^* \leq g^T x^* \leq 1$, then $g_{\min} \leq OPT^{-1}$









• x > 0 s.t. $Ax \le \epsilon, \ \eta \leftarrow \log(m)/\epsilon, \ M \leftarrow (1-\epsilon)$ OPT

- 2 Initialize weights equally* $w \leftarrow \frac{1}{m} \mathbb{1}^m$
- Set $\Delta_i = \max \{0, 1 g_i M\}$ (Lagrangian relaxation)
- $Increment x \leftarrow x + \underbrace{\eta^{-1} x \odot \Delta}_{1}$
- Update weights, $w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$
- If constraints are not tight, go to step (3)

x > 0 s.t. Ax ≤ ε, η ← log(m)/ε, M ← (1 - ε)OPT
Initialize weights equally* w ← 1/m 1^m
Set Δ_i = max {0, 1 - g_iM} (Lagrangian relaxation)
Increment x ← x + η⁻¹x ⊙ Δ d
Update weights, w_i = w_i · exp(η · A_id) ∀i
If constraints are not tight, go to step (3)

*Technically, set $w = \exp(\eta \mathbf{A} x)$

x > 0 s.t. Ax ≤ ε, η ← log(m)/ε, M ← (1 - ε)OPT
Initialize weights equally* w ← ¹/_m1^m
Set Δ_i = max {0, 1 - g_iM} (Lagrangian relaxation)
Increment x ← x + η⁻¹x ⊙ Δ d
Update weights, w_i = w_i · exp(η · A_id) ∀i
If constraints are not tight, go to step (3)
*Technically, set w = exp(ηAx)

Lemma (Fake)

Each iteration satisfies the invariant**,

$$\frac{\langle \mathbb{1}, d \rangle}{\max(\boldsymbol{A}_{X}^{(new)}) - \max(\boldsymbol{A}_{X}^{(old)})} \geq M.$$

x > 0 s.t. Ax ≤ ε, η ← log(m)/ε, M ← (1 - ε)OPT
Initialize weights equally* w ← 1/m 1^m
Set Δ_i = max {0, 1 - g_iM} (Lagrangian relaxation)
Increment x ← x + η⁻¹x ⊙ Δ d
Update weights, w_i = w_i · exp(η · A_id) ∀i
If constraints are not tight, go to step (3)

*Technically, set $w = \exp(\eta \mathbf{A} x)$

Lemma (Fake)

Each iteration satisfies the invariant**,

$$\frac{\langle \mathbb{1}, d \rangle}{\max(\boldsymbol{A}_{X}^{(new)}) - \max(\boldsymbol{A}_{X}^{(old)})} \geq M.$$

**Hard to analyze since max is not smooth

2 Initialize weights equally
$$w \leftarrow \frac{1}{m}\mathbb{1}^m$$

• Set $\Delta_i = \max \{0, 1 - g_i M\}$ (Lagrangian relaxation)

$$Increment \ x \leftarrow x + \underbrace{\eta^{-1} x \odot \Delta}_{d}$$

• Update weights,
$$w_i = w_i \cdot \exp(\eta \cdot \boldsymbol{A}_i d) \ \forall i$$

• If constraints are not tight, go to step (3)

Lemma

Each iteration satisfies the invariant,

$$\frac{\langle \mathbb{1}, d \rangle}{\operatorname{smax}(\boldsymbol{A}_{X}^{(new)}) - \operatorname{smax}(\boldsymbol{A}_{X}^{(old)})} \geq M.$$

Lemma

The algorithm converges in $\mathcal{O}(\log(m)\log(n/\epsilon)/\epsilon^2)$ iterations.

Lemma

The algorithm converges to x s.t. $\max(\mathbf{A}x) \leq \max_{\eta}(\mathbf{A}x) \leq 1$.

Lemma

The algorithm converges to x s.t. $\langle \mathbb{1}, x \rangle \geq M$.

Recap

- Approximately solve special LPs using MWU up to error ϵ
- Reduce "hard" LP into series of "easy" LPs via Lagrangian relaxation
- Parallelize by doing more work simultaneously

Experimental Results

Implemented in Python using sparse matrices (scipy). Run parallel LP solver (denote as Alina's alg) on personal laptop (2.3 GHz Dual-Core Intel i5, 8GB of memory) to solve:

- Maximum matchings (packing LP)*
- Dominating set (covering LP)

Compare with other par/seq. LP solvers:

- Mahoney et al* mixed-PC LP solver
- Kent's sequential solver*

Also run against general optimization libraries:

- CPLEX*
- CVXOPT
- MS-BFS-Graft (for bipartite graph matchings)

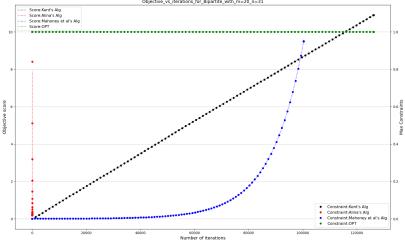
*Results included in these slides

Maximum Matching

Given a graph G = (V, E), find largest cardinality $F \subseteq E$ such that $\forall v \in V$ is incident to at most one edge in F.

$$\begin{split} \max \sum_{e \in E} x_e \text{ s.t.} \\ \sum_{e \in \mathsf{inc}(v)} x_e \leq 1 \; \forall v \in V \\ x \geq \mathbb{0}. \end{split}$$

Iteration Count Comparison



Objective vs iterations for Bipartite with m=20 n=31

Iteration Count Growth Comparison

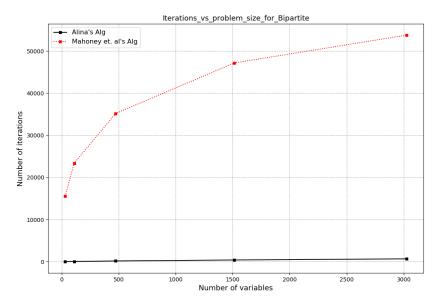
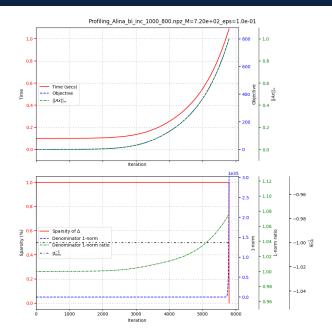


Table: CPLEX vs. ParPacLP runtime and iteration count for graph matching with $\epsilon = 0.1$. Breakdown is (matvec,vecop)

Problem	CPLEX	LP	LP Arith.	LP Iters
bi_20_30	0.0s	0.445s	(0.18s,0.12s)	2215
bi_200_300	0.45s	4.73s	(1.73s,1.70s)	4350
bi_800_1000	1.66s	106s	(40.3s,45.1s)	5800

Iteration Count Growth Comparison



Can we take larger steps?

Is the step size,

$$d = \eta^{-1}(x \odot \Delta)$$

too conservative?

Solution is optimal (i.e., $\langle \mathbb{1}, x \rangle \geq M$) as long as

$$\frac{\langle \mathbb{1}, x + d \rangle - \langle \mathbb{1}, x \rangle}{\operatorname{smax}_{\eta}(\boldsymbol{A}(x + d)) - \operatorname{smax}_{\eta}(\boldsymbol{A}x)} = \frac{\langle \mathbb{1}, d \rangle}{\delta t} \geq M$$

Can we take larger steps?

Is the step size,

$$d = \eta^{-1}(x \odot \Delta)$$

too conservative?

Solve line search: $\max \alpha$ s.t.

$$\frac{\alpha \langle \mathbb{1}, d \rangle}{\operatorname{smax}_{\eta} (\boldsymbol{A}(x + \alpha \cdot d)) - \operatorname{smax}_{\eta} (\boldsymbol{A}x)} \geq M$$
$$\max (\boldsymbol{A}(x + \alpha \cdot d)) \leq 1.$$

Binary search over α .

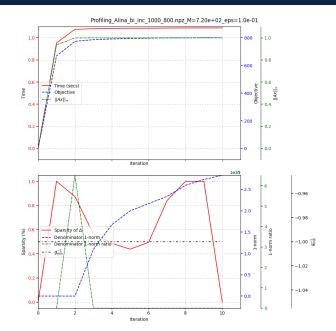
Table: CPLEX vs. ParPacLP+BS runtime and iteration count for graph matching with $\epsilon = 0.1$. Breakdown is (matvec,vecop,BS)

Problem	CPLEX	LP	LP Arith.	LP Iters
bi_800_1000	1.66s	0.26s	(0.1, 0.1, 0.0)	1
bi_2000_3000	17.52s	1.93s	(0.6,0.7,0.4)	8
A_2000_10	0.46s	0.07s	(0.0, 0.0, 0.0)	17
A_10000_16	38.17s	1.54s	(0.4,0.6,0.3)	16
wiki-Vote	0.44s	0.18s	(0.0, 0.0, 0.1)	25
amazon0312	1766.7s	23.6s	(6.2,5.5,9.8)	52
web-Google	173.2s	50.0s	(14.6,9.9,21.8)	49
cit-Patents	8171.5s	306s	(88.8,78.0,118)	62

Table: Dimensions of graphs from SuiteSparse

Problem	m	n	nnz
wiki-Vote	1.7e4	2.1e6	4.1e5
amazon0312	8.0e5	6.4e6	1.3e7
web-Google	1.8e6	1.0e7	2.0e7
cit-Patents	7.5e6	3.3e7	6.6e7

Experimental Results



- Binary step search takes the most time. Find ways to reduce the time.
- Without *M*, we need binary search to approximate OPT. Can we avoid/reduce this overhead?
- The parallel algorithm spends majority of time in initial stages. Can we accelerate this?
- Pair/couple LP with another LP solver that is fast in the beginning
- Solving an "easier" problem (subset of constraint, loosen constraints, etc.)

Tuning opportunities

- Introduce ϵ_1, ϵ_2 where $M = (1 \epsilon_1) \text{OPT}$ and $\epsilon \leftarrow \epsilon_2$
- We can incorporate "easier" problem's solution by scaling down. Opportunities to trade-off how much time is spent in "easier" problem vs. parallel LP.

- Arora, Sanjeev, Elad Hazan, and Satyen Kale. "The multiplicative weights update method: a meta-algorithm and applications." Theory of Computing 8.1 (2012): 121-164.
- Ene, Alina, personal communications.
- Mahoney, Michael W., et al. "Approximating the Solution to Mixed Packing and Covering LPs in Parallel $\tilde{O}(\epsilon^{-3})$ Time." 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
- Quanrud, Kent. Fast approximations for combinatorial optimization via multiplicative weight updates. Diss. University of Illinois at Urbana-Champaign, 2019.