LaTeX Reference

Caleb *

April 4, 2021

Abstract

We include brief descriptions of commonly used features encountered
when writing documents and papers in IXTgX.

Contents

1 Ground Zero (AA) 1
1.1 Commands and Environments (AA1) 3

[2 Links and Formatting (BB)| 4

3 Images (CC)| 5

4 Tables (DD) 8
5 Cool Styling (EE)| 10

I5.1 Text customization (EE1) 10
5.2 tcolorbox (EE2)| 10
5.3 Lists (EE3)[. 12
5.4 Buttons using Tikz (EE4) 13
6 Algorithm and Pseudocode (FF)| 14
[7 Other Tricks (GG)| 16

1 Ground Zero (AA)

I've included an empty LaTeX file and Makefile. In my Makefile, I do a couple
unconventional things. First, I make the input and output name differently.
I like to call my main file “main.tex” but rename output since Adobe has a
bug they seem to cache similarly named files. I also break large TeX files into
chapters by saving them as separate files and saving them in “chpts”.

*Email: calebju@gmail.com

The choice of font is a metter of personal taste. I have enjoyed this forum
on comparing fonts [link]. I do like the standard Modern font (1modtern) or
Utopia, the latter which is added by usepackage [utopial {mathdesign}.

Now onto specifics for the LaTex file. Before we can use theorems, we have
to explicitly define them.

Defining Theorem Macros

\theoremstyle{plain}

\newtheorem{theorem}{Theorem} [section]
\newtheorem{corollary}{Corollary}[theorem]

\newtheorem{lemma} [theorem] {Lemma}
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\theoremstyle{remark}
\newtheorem*{remark}{Remark}

Let’s see how the theorem macro is define. The first parameter is the LaTeX
keyword. The second is the text that appears in the PDF. The third is the
counter. Notice we can theorem’s keyword as a counter. The location of where
we include the counter impacts the numbering; if it included in the middle,
the macro (e.g. lemma) uses the same numbering. If the counter is at the end
(e.g. corollary), it is treated as a subheading to theorem and thus will reset with
theorem (I don’t know why I would ever do this).

Also, we can define macros with different styles, with the three default ones
used above (see here for more information). In particular, theorem (denoted as
“plain”) includes both bolded and italicized text. Definition includes just bold.
Remark is just bold. I find these to be sufficient, but the previous link shows
how to define new ones. I often use plain for imporatnt results, definition for
also examples and exercises, and remark for notes.

Theorem 1.1 (Fermat’s Last Theorem). Given three positive integers a, b, and c,
a®+bt=c™
Definition 1.1. This is a definition.

Remark. This is a remark.

The proof package is automatically included
Corollary 1.1.1. If a =b = ¢ = 0, then the theorem above holds for any n € IN.
Proof. Proof is easy. Observe 0™ + 0™ = 0™. O

Notice that QED symbol is an empty box. We can fill it in. We can also bold
“Proof” rather than italicize.

Modifying QED

\renewcommand\gedsymbol{\blacksquare}
\renewenvironment{proof}{\noindent {\bfseries Proof}}{\qed}

https://tex.stackexchange.com/questions/59702/suggest-a-nice-font-family-for-my-basic-latex-template-text-and-math/97128#97128
https://en.wikibooks.org/wiki/LaTeX/Theorems

Lemma 1.2. When a, b, and c are the side lengths of a right triangle, then
a?+b?=c?
Proof. Draw a triangle. You shall see it. |
Something very useful, especially during the editting phase, is to see the
labels of specific equations and images. To that end, we can visualized these
in the PDF itself with the useful packcage, which is included in the amsmath
package.

\usepackage{showkeys}

1.1 Commands and Environments (AA1)

\usepackage{comment}

Let’s now briefly overview commands and environments, which we have
already used earlier. Examples of commands include textbackslash {input}.
There are three ways to define commands.

New commands

\newcommand{\B} [1]{\mathbb{#1}}
\renewcommand*{\labelitemi}{\dag

\providecommand{\caleb}[1]{\textcolor{blue}{Caleb:
— \textcolor{blue}{#1}}

The new command defines a new command and throws an error if it is
already defined. Renew overwrites an existing command or throws an error if
it is not defined. Finally, the provide command defines a new command if it
doesn’t exist. Notice in each command, we can include parameters and such.
I'll include this link for more information, but the above is usually sufficient.

While commands are suitable for smaller portions of text, environments
are are designed to handle blocks of LaTex code. You may already be familiar
with some environments, such as \begin{equation}. Let’s see how to create a
simple environment with a numbering system

New commands

\newcounter{example}[section]
\newenvironment{example} [1] []{\refstepcounter{example}\par\medskip
\noindent \textbf{Example~\thesection.\theexample. #1}
—~ \rmfamily}{\medskip}

Example 1.1. This is an example of an example.

Note that we can also create environments that can hide. This is useful
if you want to create solutions. For theis, we will make use of the comment
package, as shown below.

https://www.dickimaw-books.com/latex/novices/html/newcom.html

New commands

\newtheorem*{sol}{Solution}

newif\ifshow

, \showfalse

showtrue % swap with above to hide

\ifshow
}newenv1ronment{solut1oni
\begin{sol} \color{gray}t}
{\end{sol}}

\else

v \excludecomment{solution}

i

Solution. This is the solution to blah blah

There is apparently a way to set show to true or false during make. I've tried
this solution but it does not work with the prescribed solution. If interested,
try to dig more into this.

2 Links and Formatting (BB)

\usepackage{hyperref} % for linking

\usepackage{bm} % for bolding math

\usepackage{amsfonts} % for special characters
\usepackage{bbold} % for calligrahic digits, e.g. \mathbb{1}

Let’s say we have the following equation,

min |||

st. yi(BTxi+Bo)=1-¢, i=1,...,N
N
W>0,) t<Z
i=1

We can reference the above equation using the IATpXcommand ref, but by itself

it will not cross-reference to the equation above (try removing the package). . .
Instead, we must use the package hyperref and we can now link equation 1.!

Individual Label

\begln{allgn}
\min & \hspace{10pt} x_1 + x_2 + \ldots + x_n \nonumber \\
\text{s.t. E & \hspace{10pt} a_{i,1}x_1 + a_{i,2}x_2 + \ldots
+ a_{i,n}x_n \stackrel{(1)}{\leq} 1, \ i = 1,\ldots,m
= \label{eq:packing_constraints} \\
Ehspace{lOpt} x_i \geq 0, \ i = 1,\1dots,n
-~ \label{eq:nonnegative_constraints}.

g

\end{align}

https://tex.stackexchange.com/questions/254370/compile-showtrue-and-showfalse-to-different-target-files

We can also reference individual equations as well,

min x;+Xx2+...+Xn

(1
st. apixiF+aix+...+ainxn <1,i=1,...,m (2) ‘eq:packing_cm

xi=0,i=1,...,n (3) ‘eq:nonnegativn

. :packing_constraints X X :nonnegative_constraints
Equation () are the packing constraints and equation (3 are the non-negativity

constraints.

We can write this in matrix form. To get the bold font, we need the pack-
age bm and for blackboard fonts (special symbol for reals) we utilize packages
amsfonts and bbold for digits. Note that we can also use the package bbm,
however this only contains formatting for 1 and 2. We apply it below,

min 17x
st. Ax<1
X =.

3 Images (CC)

\usepackage{graphicx} 7 input images
\usepackage{wrapfig} % enable small figures
\usepackage{float} % enable "H" placement
\usepackage{subcaption} 7 enable subimages/subcaptions

We start with a very basic image, which requires the graphicx package. The
image is summoned with the code \includegraphicsl[...]. We specify the size
of the image in the brackets, which can be absolute sizes (e.g. “3cm”) or relative
sizes (e.g., “0.5 \textwidth”, see here for more references). Additionally, we can
the image using via \begin{figure} [X], where the variable X can be “h”, “t”,
“b”, “p”, or “H”. These, respectively, stand for placing the image approximately
at the same point in the source code, at the top of the page, at the top of the
page, at the bottom of the page, put on a special page for image floats (likely
won’t be used except appendix of images), or exactly where the source code.
We can add an “!” (e.g., “h!”) to tell [&TEXto override the internal parameters
for “good” positions. Often, h! is equivalent to H, so use the former if the
compiler complains (this is fixed by adding \usepackage{float}). Second,
the image is not centered. To center it, we add the parameter \centering with
in the figure blocks. Third, we can add captions by include \captions. The
ordering of these commands is important. If we place the caption above the
image, the caption will be above the image, and equivalently it will be below.
Altogether, we get the following image.

https://www.overleaf.com/learn/latex/Inserting_Images

Input an Image

\begin{figure}[h!]
\includegraphics[width=6cm]{figs/Saddle_point}
\centering

\caption{Saddle point problem, $f(x,y) = x"2 + y 2%}
\end{figure}

Figure 1: Saddle point problem, f(x,y) = x* +y?

Note that it is possible to place the caption to the left or right using additional
packages. See this link. Like equations and theorems, image can be referenced
via \label{fig:ref name}. Finally, here is a brief note on formatting the size
and positioning of the figure.

When the image is small, we may want to wrap it alongside text. To do
so, we utilize the command subfigure instead of figure and configure its
position and size and we must include \subcaption. While using wrapfigure,
be wary of page breaks. One might have issues where the image is overlapped
with the text, see here. Personally, I've found that if the wrapfigure must be
between two texts of line. Without the text “Random” below, the image would
be incorrectly placed.

Input an Image

\begin{wrapfigure}{r}{0.15\textwidth}
\centering
\includegraphics[width=0.15\textwidth] {figs/unit}
\end{wrapfigure}

Random.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel,
wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at,
lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accum-
san bibendum, erat ligula aliquet magna, vitae ornare odio metus
a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.
Cras nec ante. Pellentesque a nulla. Cum sociis natoque penat-
ibus et magnis dis parturient montes, nascetur ridiculus mus.
Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque
cursus luctus mauris.

https://www.overleaf.com/learn/latex/Inserting_Images
https://nixtricks.wordpress.com/2009/10/26/latex-crop-resize-and-rotate-figures-in-latex/
https://tex.stackexchange.com/questions/73304/wrapfigure-problem-text-over-figure

We can also include multiple figures aligned. We utilize the figure and
within each figure will use \subfigure. This is a mechanical and so we just
write the code below; copy when it is needed.

Input an Image

\begin{figure} [H]
\begin{subfigure}{.5\textwidth}
\centering
\includegraphics[width=.8\1linewidth] {figs/Saddle_point}
\caption{la}
\label{fig:sfigl}
\end{subfigurely,
\begin{subfigure}{.5\textwidth}
\centering
\includegraphics [width=.40\1linewidth]{figs/unit}
\caption{1b}
\label{fig:sfig2}
\end{subfigure}
\\ [\smallskipamount]
\begin{subfigure}{.5\textwidth}
\centering
\includegraphics [width=.40\1linewidth]{figs/unit}
\caption{1b}
\label{fig:sfig2}
\end{subfigure}
\begin{subfigure}{.5\textwidth}
\centering
\includegraphics [width=.8\1linewidth]{figs/Saddle_point}
\caption{la}
\label{fig:sfigl}
\end{subfigurely,
\caption{Four figures in one}
\label{fig:fig}
\end{figure}

fig:sfigl

z=0)

N b

(a) 1a

fig:sfigl

Figure 2: Four figures in one

4 Tables (DD)

\usepackage{booktabs}

There is a bit of art to making tables. This dichotomy is displayed in the
tirst couple of slides in this presentation. In general,

1. Avoid vertical lines (lines may also be referred to as “rules”)

2. Avoid double lines. Instead, opt for thickness.

3. Put units in the headers (not in the body of the table)

4. Always preceed a decimal point by a digit; e.g., 0.1 instead of .1

5. Avoid “ditto” signs or any other such convention to repeat a previous
value. In many circumstances a blank will serve just as well. If it won't,
then repeat the value.

With these guidelines in mind, we now introduce the two main components to
creating tables: tabular and booktabs. The first package creates the table and
the second package simple draws good (horizontal) lines to help organize the
data. We start by briefly explaining tabular.

8

https://people.inf.ethz.ch/markusp/teaching/guides/guide-tables.pdf

A table is invoked by the command \{ tabular }[pos]{cols}. The pa-
rameter pos is similar to “h” and “H” in figure. The second parameter cols
explains how many columns we want, what the alignment of each column
is, and also enables additional spacing for consecutive tiles. The code below
shows an example, but a more detailed explanation can be found here.

The second relatively simple package, booktabs, is about nice looking hori-
zontal lines. The three main commands one will utilize are \ toprule, \midrule,
and \bottomrule. These will usually be placed beginning with the toprule,
then separating headings and data with the thinner midrule, and closing the
table with bottomrule. These are placed after the \\of the last corresponding
row. We can also subdivide columns in categories by separating the two rows
using \cmidrule. A short pdf details more information to these commands.
See the code below for a concrete example.

Create Table

\begin{table} [H]

\centering
% \begin{tabular}{@{\extracolsep{lcm}}1@{}1r@{}} \toprule
\begin{tabular}{@{}11r@{}} \toprule
\nmulticolumn{2}{c}{Item} \\ \cmidrule(r){1-2}

Animal & Description & Price (\$)\\ \midrule

Gnat & per gram & 13.65 \\

& each & 0.01 \\
Gnu & stuffed & 92.50 \\
Fmu & stuffed & 33.33 \\
Armadillo & frozen & 8.99 \\

\addlinespace [5pt]

Total & & 150.10 \\ \bottomrule

\end{tabular}

\caption{This is a caption for the table}

\end{table}

Item
Animal Description Price ($)
Gnat per gram 13.65
each 0.01

Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99
Total 150.10

Table 1: This is a caption for the table

Alternatively, here is a list of example tables.

http://www.emerson.emory.edu/services/latex/latex_69.html
http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/booktabs/booktabs.pdf
http://cpansearch.perl.org/src/LIMAONE/LaTeX-Table-v1.0.6/examples/examples.pdf

5 Cool Styling (EE)

\usepackage{xcolor}
\usepackage{soul}
\usepackage{tcolorbox}
\tcbuselibrary{skins, breakable}
\usepackage{enumitem}

5.1 Text customization (EE1)

Like in word processing files, we would like to customize texts beyond the sim-
ple italization and bolding: things like coloring, underlining, strikethrough, hi-
ights, and more. We start with coloring. Start by importing \usepackage{xcolor}.
From here, colors can be invoked by either \textcolor{colorname}{Text} or
{\color{colorname}Text}. By default, the colors include yellow “base colors”
such as blue and . These colors can be mixed by taking percentages of a
color, suchas green!55!blue, a color that arises by taking 55% green and what
remains as blue (45%). More colors can be obtained by including xcolor’s
different package options via \usepackage [optionnames]{xcolor}. Option
names include dvipsnames, svgnames, and x11names. Their specific colors can
be found in the documentation.

Next, we explore the world of highlighting by invoking the macro \h1{}
after importing, \usepackage{soul}. We can choose colors other than yellow
by running the command \sethlcolor{colorname}. Hightlighting and text-
coloring can be combined by nesting the hl command within a textcolor or
color command.

We now move onto styling with lines, such as strikethroughs and under-
lines. The package soul already includes strikethroughs and underlines via
\st{} and \ul{}, respectively. Other customizations, such as changing the the
color of the lines, applying all caps, and spacings can be found in the package’s
documentation.

5.2 tcolorbox (EE2)

The package tcolorbox is an extensive package that allows beautiful displays of
boxes to showcase important results/text/ideas. There are too many features
to consider learning at once (or demo-ing for that matter — the documentation
is 530 pages long), so we only include the critical detail. The base package is
included via \usepackage {tcolorbox}. By itself, tcolorbox is boring. We can
extend it by including additional programs via \tcbuselibrary{(keylist)}. I
typically include only skins, theorems, and breakable, but a fully laundry list
can be found here.
We can start with a barebones box.

10

https://ctan.math.illinois.edu/macros/latex/contrib/xcolor/xcolor.pdf#page=38
http://ctan.mirrors.hoobly.com/macros/generic/soul/soul.pdf
http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/contrib/tcolorbox/tcolorbox.pdf
http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/contrib/tcolorbox/tcolorbox.pdf#page=9

Input an Image

\begin{tcolorbox}

This is a \textbf{tcolorbox}.
\tcblower
Here, you see the lower part of the box.

\end{tcolorbox}

This is a tcolorbox.

Here, you see the lower part of the box.

The options (the stuff inside the brackets) enables additional features, such
as the color and fill of the box, the title, shadows, and many other features. I
like the following setup the most so I'll only include this one.

Input an Image

\begin{tcolorbox} [colback=blue!5,colframe=blue!40!black,
title=Example Title, drop shadow,

skin=enhanced, fonttitle=\bfseries, breakable]
This is an example box.

\end{tcolorbox}

Example Title

This is an example box.

Notice in the above box we have included the breakable option. For larger
boxes, this allows the box to cross pages. An earlier version was used for the
subfigure code.

Now, we can set the default baseline tcolorbox-es using tcbset. The appli-
cation will be applied to all subsequent tcolorbox-es.

Input an Image

\tcbset{ drop shadow, skin=enhanced, fonttitle=\bfseries, }
\begin{tcolorbox}
This is again a \textbf{tcolorbox}.

\tcblower
This was set using \texttt{tcbset}.

\end{tcolorbox}

This is again a tcolorbox.

This was set using tcbset.

I consider these to be the essential setup for tcolorbox. More features, such
as fitting the box to the exact size of the LaTleX object, defining new boxes,
followed by a full list of options, can others can be found starting here here.

11

http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/contrib/tcolorbox/tcolorbox.pdf#page=14

To end the quick tutorial on tcolorbox, here is a quick STOP sign that can
be drawn with it.

One more cool styling, which is useful in practice. We can try a nice gray
box around an important result to highlight it.

Input an Image

\newcommand{\greybox}[1]1{ \begin{tcolorbox}[sharp
corners,colback=black!10!white,colframe=black!10!white]#1\end{tcolorbox}

—
—

Lemma 5.1 (Three point lemma). Lef {x{} be generated by (??) with the Eu-
clidian distance replaced by a Bregman divergence D,. Then for any x € Q

Ye(g(xt), Xt+1 — %) + D (%41, %) < D(x,%¢) — D(X, X¢41)-

5.3 Lists (EE3)

The popular commands, enumerate and itemize, can be further customized if
we include the package via \usepackage{enumitem} (with corresponding doc-
umentation found here). First, enumerate, we can customize which symbols
are used to list each item via the label option (see the code below). We can set
this to either \alpha, \Alpha, \arabic, \roman, or \Roman. Make sure to include
an asterik at the end (I don’t know what it does, all I know is that it doesn’t
compile otherwise).

Input an Image

\begin{enumerate}[label=\textit{\arabic*})]
\item blah
\item blahh
\item bblahh

\end{enumerate}

1) blah
2) blahh
3) bblahh

We can do other customizations. To get a “tight” enumerate (i.e., less spac-
ing), we can add additional options (I will not write it, instead see the code).
Second, we can redefine the nested itemizations to have unique symbols (typi-
cal of what you would encounter in a word document). To do so, one needs to

12

https://mirrors.rit.edu/CTAN/macros/latex/contrib/enumitem/enumitem.pdf

redefine the macros \labelitemi to \labelitemiv (see the code below). And
as always, there is more code here. We display the end result below.

Input an Image

\renewcommand{\labelitemi}{\bullet}
\renewcommand{\labelitemii}{\cdot}
\renewcommand{\labelitemiii}{\diamond}
\renewcommand \labelitemiv}{\ast}

<begin{enumerate}[1abel=\roman*), topsep=0pt, itemsep=-lex,
— partopsep=lex, parsep=lex]
\item {Etexttt{\textbackslash topsepl}}: space between first
— 1item and preceding paragraph.
\item {\texttt{\textbackslash partopsep}}: extra space added
to {\texttt{\textbackslash topsep}} when environment
3 starts a new paragraph
\begin{enumerate} [nosep]
\item Is
\begin{enumerate} [nosep]
\item this
\begin{enumerate} [nosep]
\item Inception?
\end{enumerate}
\end{enumerate}
. }end{enumerate} .
\item {\texttt{\textbackslash itemsepl}}: space between

<, successive items.
\end{enumerate}

i) \topsep: space between first item and preceding paragraph.
ii) \partopsep: extra space added to \topsep when environment starts a
new paragraph
(@) Is
i. this
A. Inception?
iii) \itemsep: space between successive items.

A more succinct way to remove all spacing is to use the option \nosep.

5.4 Buttons using Tikz (EE4)

\usepackage{tikz}
\usetikzlibrary{calc}

We can also draw a button with Tikz drawing. I'll put the code below,
which is borrowed from StackOverflow.

Drawing a Button

\begin{tikzpicturel}[
button/.style={
rectangle,
minimum size=6mm,

13

https://texblog.org/2008/10/16/lists-enumerate-itemize-description-and-how-to-change-them/
https://tex.stackexchange.com/questions/7566/is-there-a-way-to-draw-3d-style-buttons

very thick,

rounded corners,
draw=red!50!black!74,

top color=red!50!black!70,
bottom color=white,

node [button] (button) {Button Text!};
\begin{scope} [opacity=.6, transparency group]
\draw[white,fill=white,rounded corners={2pt}] ($
(button.north west) + (3pt,-3pt) $) rectangle ($
< (button.north east) + (-3pt,-8pt) $);
\draw[white,fill=white,rounded corners={.5pt}] ($
(button.north west) + (3pt,-6pt) $) rectangle ($
2 (button.north east) + (-3pt,-8pt) $);
\end{scope}
\draw[white,fill=white,opacity=.8,rounded corners={1pt}] ($
(button.south west) + (5pt,2pt) $) rectangle ($
= (button.south east) + (-5pt,4pt) $);
\end{tikzpicture}

l DutltoInn 1ext: l

6 Algorithm and Pseudocode (FF)

\usepackage{algorithm}

% \usepackage{algorithmicx} 7 automatically imported via

— algpseudocode

\usepackage [noend] {algpseudocode} % noend = no keyword "end",
~ e.g. "end if"

Looking online for packages for writing algorithms, one immediately finds
there are a variety of packages that all appear to do the same thing. Naturally,
one asks: which one do I use? I especially like this answer, which I will
summarize below.

1. \algorithmic - basic and first algorithm typesetting environment. Think
of this as version 1

2. \algorithmicx - second and more customizable algorithm typesetting
environment. Note that this package “ itself doesn’t define any algorith-
mic commands (e.g. If, For), but gives a set of macros to define such a
command set”. Instead, one can import predefined commands (layouts)
such as algpseudocode.

3. \algorithm2e - third typesetting environment

4. \algorithm - float wrapper. Le., one writes their algorithmic or algorithmicx
within this to prevent page breaks, specify positioning, and starting line
numbers. Makes it easier to read.

14

https://tex.stackexchange.com/questions/229355/algorithm-algorithmic-algorithmicx-algorithm2e-algpseudocode-confused/230789#230789?s=7b7f3d6980444fc9951ed918fdce0142

5. \algpseudocode - this is a layout style included in algorithmicx that
mimics the style found in the algorithmic package. As previous de-

scribed, this package will define the common algorithm macros in algorithmicx

for us. Other layouts include algcompatible, algpascal (mimics pascal),
and algc (mimics C).

[ATEXusers and myself seem to use the algorithmicx with the algpseudocode
layout combined with the float wrapper algorithm. Note that if you im-
port algpseudocode you do not need to import algorithmicx since the for-
mer imports the latter (source). The main predefined macros are \For, \While,

\Repeat, \If{(Condition)} and \E1lsIf and \Else, \Procedure{(name)}{(params)},

\Function{(name)}{(params)}, and \Loop. When invoking these, make sure
to end with and \EndX, where X is the macro that is used. E.g., \EndFor. Lines
that are just code (i.e. x =5+ y) start with the macro \State.

Input an Image

\begin{algorithm}
\begin{algorithmic}[1]
\caption{Breadth First Search}
\Procedure{BFS}{$G=(V,E)$, $s \in V$}
\State $X \gets \texttt{queue}(\{s\})$ \Comment{Becomes DFS
~ if use stack}
\While{$X \ne \emptyset$}
\State $curr \gets X.\texttt{pop}()$
\State %curr visited = \texttt{True}$
\State $\texttt{print}(curr)$
\For{$v \in N(curr)$}
\If{$! v.visited$}
\State $X.\texttt{push}(v)$
\EndIf
\EndFor
\EndWhile
\EndProcedure
\end{algorithmic}
\end{algorithm}

Algorithm 1 Breadth First Search

1: procedure BFS(G = (V,E), s € V)

2 X + queue({s}) > Becomes DFS if use stack
3 while X # () do

4 curr < X.pop()

5: curr.visited = True

6 print(curr)

7 forv € N(curr) do

8 if lv.visited then

9 X.push(v)

Note that instead of procedure, we can use Function instead. Typically, a
function is synonmous with returning whereas Procedure is for running a set
of commands.

15

http://mirror.ox.ac.uk/sites/ctan.org/macros/latex/contrib/algorithmicx/algorithmicx.pdf#page=5

7 Other Tricks (GG)

For increased spacings between paragraphs, we can use \\ [\defaultaddspace]
instead of the (often too large) \\. For between lines, we can similarly use

\\hspace{10pt}.

While you want to include a backslash, use the command \textbackslash.

References

16

	Ground Zero (AA)
	Commands and Environments (AA1)

	Links and Formatting (BB)
	Images (CC)
	Tables (DD)
	Cool Styling (EE)
	Text customization (EE1)
	tcolorbox (EE2)
	Lists (EE3)
	Buttons using Tikz (EE4)

	Algorithm and Pseudocode (FF)
	Other Tricks (GG)

