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Motivation for Parallel Algorithms

Assess the efficiency of parallel algorithms by analyzing:
@ Depth, Dp(n), is length of the longest series of operations

e Work, Wp(n), is runtime in a sequential setting

We seek algorithms that are:
e Polylog(arithmic) depth , Dp(n) = O(poly(log n))
o Nearly work-efficient, Wp(n) = O(Ts(n) - poly(log n))
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Parallel algorithms for shortest paths problem

r

Given a (non—negative) weighted graph G = (V, E) shortest
paths problem finds the shortest path from s — t in G.

The single source shortest paths problem is the shortest path from
s € S to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?
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Parallel algorithms for shortest paths problem

r

Given a (non—negative) weighted graph G = (V, E) shortest
paths problem finds the shortest path from s — t in G.

The single source shortest paths problem is the shortest path from
s € S to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?
e Dijkstra’s algorithm requires O(m + n-log(n)) work/depth
@ Bellman Ford requires O(nm) work and O(n) depth
e Floyd—Warshall requires O(n®) work and O(log n) depth
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Parallel algorithms for shortest paths problem

r

Given a (non—negative) weighted graph G = (V, E) shortest
paths problem finds the shortest path from s — t in G.

The single source shortest paths problem is the shortest path from
s € S to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?
e Dijkstra’s algorithm requires O(m + n-log(n)) work/depth
@ Bellman Ford requires O(nm) work and O(n) depth
e Floyd—Warshall requires O(n®) work and O(log n) depth

Question: Does there exist a (1 + €)—shortest paths algorithm with
O(m - poly(log n)) work and O(poly(logn)) depth?
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Previous and New Results

Previous Results

@ Use hopset [Coh94] to solve
(1 4 €)—shortest paths in
polylog depth and Q(n??)
work

@ Any (1+ ¢)-shortest paths
algorithm with polylog depth
using only hopsets requires
Q(n**+¢) work [ABP18]
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Previous and New Results

Previous Results .
This Paper
© Use hopset [Coh94] to solve @ Construct a novel data

(1|+| 8)—jhor;:est ga;)hs |2n1 structure, a low hop emulator,
polylog depth an (n*%) to solve approximate single

work source shortest paths

@ Any (1+ ¢)-shortest paths
algorithm with polylog depth
using only hopsets requires
Q(n**+¢) work [ABP18]

@ Compute (1 + ¢)—approximate
shortest path in polylog depth
and nearly linear work via
[Shel7] and low hop emulators
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Previous and New Results

Previous Results Thi
is Paper
@ Use hopset [Coh94] to solve
(1 4 €)—shortest paths in
polylog depth and Q(n??)
work

© Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

@ Any (1+ ¢)-shortest paths
algorithm with polylog depth
using only hopsets requires
Q(n**+¢) work [ABP18]

@ Compute (1 + ¢)—approximate
shortest path in polylog depth
and nearly linear work via
[Shel7] and low hop emulators

Given a graph G = (V,E), a low hop emulator is a weighted
graph H = (V,F) where any shortest (s — t)—path with
O(log log n) edge traversals and |F| = O(m - poly(log n)).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4/59



@ Constructing a Low Hop Emulator
@ Constructing a subemulator
@ Recursive subemulators
@ Collapsing into a low—hop emulator
@ Constructing a low—hop emulator (in parallel)

© (1 +¢) shortest paths in polylog depth and nearly linear work
@ Solving shortest paths via optimization and Sherman’s framework

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 5/59



Constructing a low hop emulator

To construct a low hop emulator,
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator
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Constructing a low hop emulator

To construct a low hop emulator,
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

A subemulator is a graph H = (S, F’) where S C V and F'is a
weighted edge set that approximates distances well.

@ Every vertex v € V is close to a vertex in S

@ Distances in H approximate distances in G
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Constructing a subemulator

A subemulator is a graph H = (S, F’) where S C V and F’ is a
weighted edge set that approximates distances well.

@ Select vertices first by sampling

Our analysis depends on the ball Bg ,(v), which is the closest b vertices
(graph distance) to v in G,
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Constructing a subemulator

A subemulator is a graph H = (S, F’) where S C V and F’ is a
weighted edge set that approximates distances well.

@ Select vertices first by sampling
@ Add more vertices to ensure vertex in V is close to a vertex in S

Our analysis depends on the ball Bg 5(v), which is the closest b vertices
(graph distance) to v in G,
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Constructing a subemulator

A subemulator is a graph H = (S, F’) where S C V and F’ is a
weighted edge set that approximates distances well.

@ Select vertices first by sampling

@ Add more vertices to ensure vertex in V is close to a vertex in S

© Add edges and assign weights so that local distances are
well-approximated

Our analysis depends on the ball Bg 5(v), which is the closest b vertices
(graph distance) to v in G,

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 7/59



Selecting vertices

Fix a ball size b (to be defined later).
@ Construct S by sampling every vertex with probability
p = min(50%%&" 1)

@ If v € V is not near any vertex in 5, add v to S

© Store the leader g(v) <« closest vertex u € Stov € V

Output: A sparse vertex set S and mappingg: V — S
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Adding edges

Adding edges:
Q Forall (u,v) € E, add edge (q(u),q(v))

Q@ Fix v e V. Yue B(v), add edge ((q(v), q(v))

When adding an edge e = (q(u), g(v)) to F, update weight

w(e) = min {w(e), (initialize to oo)
de(q(u),u) +dg(u,v)+dg(v,q(v))
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Properties of subemulators

Given a subemulator H = (S, F'), Size
o E[|S]] <n
o |[F'|<m+nb

Distance approximation
@ Forany u,v €S,
de(u,v) < dy(u,v) <8-dg(u,v).

e Forany u,v eV,

dr(q(u),q(v)) < dg(u,q(u)) +22-dg(u,v) + dc (v, q(v)).
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8-approximation for shortest (u, v)—path

Consider arbitrary u, v € S and its shortest path in G.

IS
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8-approximation for shortest (u, v)—path
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Constructing a Low Hop Emulator

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator
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Recursive subemulators

Set by < n.

Let the first subemulator Hy be the original graph G.

While |V(H;)| > b
Q@ Vv € V(H;), save By, p.(v)
@ Hi1 + SUBEMULATOR(H;, b))
© Update bj 1 « b} and i+ i+1

Output: Set of subemulators H; and set of balls B(v'),Vv' € H;
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Recursive subemulators

Andoni, Stein, Zhong (Columbia)

H,

Hy

Hy

Figure: Recursive subemulators
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Calculating distances from multiple subemulators

Let u, v be arbitrary vertices whose distance we want to compute.

d=0,i=0

u =u, vp =vVv

While u;, v; are not in the same ball:
Q d < d+du(q(ui), uj)) +du, (v, q(vi))
Q uit1 < q(uj), viy1 < q(vi)
Q@ i+ i+1

Return d + dy. (uj, vi).
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Calculating distances from multiple subemulators

H,

u= Up

Figure: Traversing Hy
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Calculating distances from multiple subemulators

H,
o— o
Hy
51
Uy
Ho
ue.
) v

Figure: Traversing H
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Calculating distances from multiple subemulators

H,
Uo6—— 0 v,
Hy
@@ *
o
Ho
ue.

Figure: Traversing H»
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Calculating distances from multiple subemulators

H,
U0 o v,
Hy
@@ *
o
Hy
ue.

Figure: Near vertices exact distance
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Properties of a distance oracle

@ Number of subemulators is O(log log n)

@ Traversing up—down subemulators to get (u, v)-shortest path is
269(loglogn) — poly(log n)—approximation

© Store O(loglog n) subemulators and each vertex’s ball
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Constructing a Low Hop Emulator

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator
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Collapsing towards a low—hop emulator

QO V «+ (V(Ho),O) U... (V(H,-), i) U (V(Ht), t)
@ Add the
© Keep all edges within each subemulator

© Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wr ((u, 1), (v.j)) = 27t~ max() . gy (u, v).
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Collapsing towards a low—hop emulator

H,
e —— o
H,
Hy
Ug Vo
Figure: between levels
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Collapsing towards a low—hop emulator
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Figure: Edges within a level
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Collapsing towards a low—hop emulator
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Figure: Edges between nearby vertices
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Collapsing towards a low—hop emulator
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Figure: Scaling edges
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Collapsing towards a low—hop emulator

@ Can remove copies of a vertex v, (v,0), (v,1),..., and preserve edges
by squishing all copies of vertex to bottom level

OK since have edges between (v, i) and (v,i+1)

are weight zero.

@ There always exists a shortest (u — v)—path with minimial edge
traversals without using blue edges

Close edges will be covered by green edges and far edges

will never be used.
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Collapsing towards a low—hop emulator
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Figure: Almost low—hop emualtor
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Collapsing towards a low—hop emulator
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Figure: Removing redundant vertices
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Collapsing towards a low—hop emulator
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Figure: Remove blue edges
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Recap

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator
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High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

Our constructed graph H = (V/, F):
@ Shortest path requires O(loglog n) traversals
@ Distance is 279(98lg ) — poly(log n)-approximated
@V =V
Q@ E|[|F|] = O(n- poly(log n))

[ Corollary: H is a low—hop emulator.
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Constructing a low—hop emulator (in parallel)

Assume that we have computer that allows concurrent reads and
concurrent writes (CRCW).

© Create the ball centered at v
@ Selecting vertices

© Adding edges

© Recursive subemulators

@ Collapsing towards a low—hop emulator
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Creating the ball centered at v (in parallel)

Uses path—doubling idea as done in Floyd—Warshall.

,

Lo(v) < closest b neighbors of v (including v itself)
For u € Lo(v), compute dist® (v, u)

Fori=1,..., t = [logn]:
Q Vv,ucV, set dist(i)(v, u) ¢ oo
@ Fix v € V. Consider (v, x, u) such that x € L;_1(v) and
u e Li_1(x). Update dist!) (v, u) if
dist' =Y (v, x) + dist =V (x, u) is smaller
© Forevery v € V, set L;(v) < closest b vertices

Output: B(v) ¢ L; and exact distance d(*) (v, -)
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 0
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 1
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 2
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 4
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Creating the ball centered at v (in parallel)

[ Lo(v) < closest b neighbors of v. Compute dist®) (v, u)

@ Use polylog depth and nearly work-efficient parallel sorting algorithm
= O(log? n) depth and O(mlog? n) work
e Initialize distance in O(1) depth and O(m) work

April 20, 2020 39/59
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Creating the ball centered at v (in parallel)

Fori=1,..., t = [logn]:
Q@ Vv,ucV, set dist(i)(v, u) < oo
@ Fix v € V. Consider (v, x, u) such that x € L;_1(v) and
u e Li_1(x). Update dist!) (v, u) if ...
© For every v € V, set Lj(v) < closest b vertices

We perform ball computations on each vertex in G or a subemulator H;.
Repeat log n times:

@ < b? vertex pairs per vertex v € V.

@ E[|V(H:)|] = O(n-poly(logn))/b? = O(n - poly(log n)) work and
O(1) depth per iteration

© Use sorting algorithm
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Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
@ Construct S by sampling every vertex

@ If v € V is not near any vertex in S, add v to S
© Store the leader g(v) < closest vertex u € Stov € V
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Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
@ Construct S by sampling every vertex
@ If v € V is not near any vertex in S, add v to S

© Store the leader g(v) < closest vertex u € Stov € V

@ O(1) depth and O(n) work
@ Construct a ball. Check requires O(1) depth and O(n) work

@ Ditto

April 20, 2020
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Adding edges (in parallel)

Adding edges:
@ Forall (u,v) € E, add edge (q(u), q(v))

@ Fix v € V. Vu e B(v), add edge ((q(v),q(v))
When adding an edge e = (q(u), g(v)) to F, update weight

w(e) = min {w(e), (initialize to oo)
de(q(u), u) + dg(u,v) + dg(v,q(v))
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Adding edges (in parallel)

Adding edges:

@ For all (u,v) € E, add edge (q(u), q(v))
@ Fix v € V. Vu e B(v), add edge ((q(v),q(v))

w(e), (initialize to c0)

When adding an edge e = (q(u), g(v)) to F, update weight

dc(q(u),u) + dg(u,v) + dg(v,q(v))

@ Uses ball to compute exact distances. (1) depth and O(m) work

@ Ditto
@ Ditto
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Recursive subemulators (in parallel)

Set by < n.
Let the first subemulator Hy be the original graph G.

While |V(H;)| > bi:
@ Vv € V(H;), save By, p.(v)
@ H;;1 + SUBEMULATOR(H;, b;)
© Update bjy1 + b,-l'25 and i < i+1
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Recursive subemulators (in parallel)

Set by < n.
Let the first subemulator Hy be the original graph G.

While |V(H;)| > bi:
@ Vv € V(H;), save By, p.(v)
@ H;;1 + SUBEMULATOR(H;, b;)
© Update bjy1 + b,-l'25 and i < i+1

.

Repeat O(loglog n) times:
© Ball construction
© Proved is polylog depth and nearly linear
@ 0O(1)
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Collapsing towards a low—hop emulator (in parallel)

For every subemulator Ho, ..., Ho(iog iogn):
©Q Add the

© Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

we (0, v) = 270 Ly (u, v).
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Collapsing towards a low—hop emulator (in parallel)

For every subemulator Ho, ..., Ho(iog iogn):
©Q Add the

© Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

we (0, v) = 270 Ly (u, v).

Repeat O(loglog n) for each subemulator
Q@ O(1) depth and O(n - poly(log n)) work
@ Ditto
© Weights: Ditto
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Constructing a low—hop emulator (in parallel)

Recap. Assuming we have a concurrent read, concurrent write
computational model, we can solve the following problems in polylog
depth and near linear work:

@ Create the ball centered at v
@ Selecting vertices
© Adding edges
© Recursive subemulators
@ Collapsing towards a low—hop emulator
Constructing a low—hop emulator can be done in same depth and work.
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Applications

Compute the following problems with polylog approx, polylog depth, and
nearly linear work:

© SSSP via Bellman-Ford
@ Bourgain’s embedding
© Low diameter decomposition
@ Metric tree embedding

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 46 /59



Uncapacitated min—cost flow (transshipment) problem

Let W € R™*™ be a diagonal matrix of weights. Let A € R"*™ be the
incidence matrix,
1 : Jedge u=(ij)
Ay =1 —1: Jedgeu=(j,)
0 : otherwise

Find a vector f € IR™ such that

in || Wf
min || W,

s.t. Af = b,

where b € IR” is the demand vector, where we require }_ b; = 0.
i

\

If b(s) =1, b(t) = —1, then solves (s, t)-shortest path length.
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Uncapacitated min—cost flow problem

An equivalent problem:

Let x = Wf. Find the optimal x* such that

P
x* = min ||x||;

st. AW lx = b.
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Uncapacitated min—cost flow problem

An equivalent problem:

Let x = Wf. Find the optimal x* such that

P
x* = min ||x||;

st. AW lx = b.

Lemma: There exists (1 + €)—approximation algorithm to the op-
timization problem above in that runs in polylog depth if there
exists a matrix P such that

[Ix*[ly < [|Pblly < O(polylogn) - [|x*]; -
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Earth Movers Distance Problem

The Earth Mover's Distance (EMD) problem is

min Z m(u,v) - [|¢(u) — 4’(V>||1

7'(2V><V—)]R20 (U,V)GVXV
st. Vue V, Y m(uv)— Y n(v,u) = by
veV veV

Find a vector f € IR™ such that

in ||Wf
min || W

s.t. Af = b,
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Bourgain's Embedding

Theorem (Bourgain's Embedding)

Every metric space (V, dy) can be embedded in £, with distortion
O(log n).

Given a graph G = (V, E) and distance d : V x V — R™, there exists a
mapping ¢ : V — [A]90°8° ) such that
d(u,v) <|[¢(u) —¢(v)|l; < O(logn)d(u,v),

where A < Y we.
ecE

Using Bourgain's embedding via low—hop emulators, we can find a
mapping ¢ : V — [A]" such that

OPTEMD(b) S O(PC"Y('Og n))OPTtransshipment(b)-
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Creating a preconditioner using grids
/ / )
/ / GU

Figure: Grids
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Creating a preconditioner

/ o7 = G

Figure: Grids with points
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Creating a preconditioner

_ °° -

Figure: Points in same cell vs. random shift T
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Creating a preconditioner

Construct a series of L = 1+ log A grids G; as above.

Let T € [A] be a uniform random variable.

r

Lemma: Define the vector

hicy=1-2' D by,
veVigp(v)+t-1,€C

where i is the level of the grid (ie. G;) and C € G; is a cell. Then,

Q E.[||hl|{] < 2Ly - OPTemp(b)
@ |h|l; > OPTemp(b),

\.

where 77 = O(log? n).
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Creating a preconditioner

Construct a vector A" such that E[ || h||; ] = ||#]|;.

hZI,C,T) =1 Z by.
veVip(v)+t-1,€C
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Creating a preconditioner

Construct a vector A" such that E[ || h||; ] = ||#]|;.

hZI,C,T) =1 Z by.
veVip(v)+t-1,€C

Prescribes a matrix P’ where

P _{17 Do(v)+T-1,eC

(LCTv ) 0 ¢ otherwise

Then ' = P’b, and

Iy < [[#][; = [[P"b[|, < (poly(log m)) X"l

Andoni, Stein, Zhong (Columbia)
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Creating a preconditioner

4 )

(i,Ct=0) n o
@i,C,t=1) 0
i\t =0) 0
@@C,t=1) n °

i ®
G.C,T = 0) 0 .
¢.Ct=1) 0 ] °

- _/

Figure: Preconditioner vs. Grids
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Uncapacitated min—cost flow problem

We want to solve the following problem:

r

Let x = Wf. Find the optimal x* such that
x* = min ||x
min x|

st. AW Ix = b.
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Uncapacitated min—cost flow problem

We want to solve the following problem:

r

Let x = Wf. Find the optimal x* such that
x* = min ||x
min x|

st. AW Ix = b.

Lemma: There exists (1 + ¢)—approximation algorithm to the op-
timization problem above in that runs in polylog depth using a
matrix P’ where

Ix*ly < || P'b[|; < O(poly log n) - [Ix7||; -
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@ Constructing a Low Hop Emulator
@ Constructing a subemulator
@ Recursive subemulators
@ Collapsing into a low—hop emulator
@ Constructing a low—hop emulator (in parallel)

© (1 +¢) shortest paths in polylog depth and nearly linear work
@ Solving shortest paths via optimization and Sherman’s framework
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Thanks. Questions?
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