Parallel Approximate Undirected Shortest Paths Via

Low Hop Emulators

Alexandr Andoni, Clifford Stein, Peilin Zhong

Columbia University

April 20, 2020

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 1/59

Motivation for Parallel Algorithms

Assess the efficiency of parallel algorithms by analyzing:
@ Depth, Dp(n), is length of the longest series of operations

e Work, Wp(n), is runtime in a sequential setting

We seek algorithms that are:
e Polylog(arithmic) depth , Dp(n) = O(poly(log n))
o Nearly work-efficient, Wp(n) = O(Ts(n) - poly(log n))

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 2/59

Parallel algorithms for shortest paths problem

r

Given a (non—negative) weighted graph G = (V, E) shortest
paths problem finds the shortest path from s — t in G.

The single source shortest paths problem is the shortest path from
s € S to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Parallel algorithms for shortest paths problem

r

Given a (non—negative) weighted graph G = (V, E) shortest
paths problem finds the shortest path from s — t in G.

The single source shortest paths problem is the shortest path from
s € S to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?
e Dijkstra’s algorithm requires O(m + n-log(n)) work/depth
@ Bellman Ford requires O(nm) work and O(n) depth
e Floyd—Warshall requires O(n®) work and O(log n) depth

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Parallel algorithms for shortest paths problem

r

Given a (non—negative) weighted graph G = (V, E) shortest
paths problem finds the shortest path from s — t in G.

The single source shortest paths problem is the shortest path from
s € S to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?
e Dijkstra’s algorithm requires O(m + n-log(n)) work/depth
@ Bellman Ford requires O(nm) work and O(n) depth
e Floyd—Warshall requires O(n®) work and O(log n) depth

Question: Does there exist a (1 + €)—shortest paths algorithm with
O(m - poly(log n)) work and O(poly(logn)) depth?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Previous and New Results

Previous Results

@ Use hopset [Coh94] to solve
(1 4 €)—shortest paths in
polylog depth and Q(n??)
work

@ Any (1+ ¢)-shortest paths
algorithm with polylog depth
using only hopsets requires
Q(n**+¢) work [ABP18]

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Previous and New Results

Previous Results .
This Paper
© Use hopset [Coh94] to solve @ Construct a novel data

(1|+| 8)—jhor;:est ga;)hs |2n1 structure, a low hop emulator,
polylog depth an (n*%) to solve approximate single

work source shortest paths

@ Any (1+ ¢)-shortest paths
algorithm with polylog depth
using only hopsets requires
Q(n**+¢) work [ABP18]

@ Compute (1 + ¢)—approximate
shortest path in polylog depth
and nearly linear work via
[Shel7] and low hop emulators

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4/59

Previous and New Results

Previous Results Thi
is Paper
@ Use hopset [Coh94] to solve
(1 4 €)—shortest paths in
polylog depth and Q(n??)
work

© Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

@ Any (1+ ¢)-shortest paths
algorithm with polylog depth
using only hopsets requires
Q(n**+¢) work [ABP18]

@ Compute (1 + ¢)—approximate
shortest path in polylog depth
and nearly linear work via
[Shel7] and low hop emulators

Given a graph G = (V,E), a low hop emulator is a weighted
graph H = (V,F) where any shortest (s — t)—path with
O(log log n) edge traversals and |F| = O(m - poly(log n)).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4/59

@ Constructing a Low Hop Emulator
@ Constructing a subemulator
@ Recursive subemulators
@ Collapsing into a low—hop emulator
@ Constructing a low—hop emulator (in parallel)

© (1 +¢) shortest paths in polylog depth and nearly linear work
@ Solving shortest paths via optimization and Sherman’s framework

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 5/59

Constructing a low hop emulator

To construct a low hop emulator,
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 6/59

Constructing a low hop emulator

To construct a low hop emulator,
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

A subemulator is a graph H = (S, F’) where S C V and F'is a
weighted edge set that approximates distances well.

@ Every vertex v € V is close to a vertex in S

@ Distances in H approximate distances in G

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 6/59

Constructing a subemulator

A subemulator is a graph H = (S, F’) where S C V and F’ is a
weighted edge set that approximates distances well.

@ Select vertices first by sampling

Our analysis depends on the ball Bg ,(v), which is the closest b vertices
(graph distance) to v in G,

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 7/59

Constructing a subemulator

A subemulator is a graph H = (S, F’) where S C V and F’ is a
weighted edge set that approximates distances well.

@ Select vertices first by sampling
@ Add more vertices to ensure vertex in V is close to a vertex in S

Our analysis depends on the ball Bg 5(v), which is the closest b vertices
(graph distance) to v in G,

April 20, 2020 7/59

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications

Constructing a subemulator

A subemulator is a graph H = (S, F’) where S C V and F’ is a
weighted edge set that approximates distances well.

@ Select vertices first by sampling

@ Add more vertices to ensure vertex in V is close to a vertex in S

© Add edges and assign weights so that local distances are
well-approximated

Our analysis depends on the ball Bg 5(v), which is the closest b vertices
(graph distance) to v in G,

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 7/59

Selecting vertices

Fix a ball size b (to be defined later).
@ Construct S by sampling every vertex with probability
p = min(50%%&" 1)

@ If v € V is not near any vertex in 5, add v to S

© Store the leader g(v) <« closest vertex u € Stov € V

Output: A sparse vertex set S and mappingg: V — S

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Adding edges

Adding edges:
Q Forall (u,v) € E, add edge (q(u),q(v))

Q@ Fix v e V. Yue B(v), add edge ((q(v), q(v))

When adding an edge e = (q(u), g(v)) to F, update weight

w(e) = min {w(e), (initialize to oo)
de(q(u),u) +dg(u,v)+dg(v,q(v))

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 9/59

Properties of subemulators

Given a subemulator H = (S, F'), Size
o E[|S]] <n
o |[F'|<m+nb

Distance approximation
@ Forany u,v €S,
de(u,v) < dy(u,v) <8-dg(u,v).

e Forany u,v eV,

dr(q(u),q(v)) < dg(u,q(u)) +22-dg(u,v) + dc (v, q(v)).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 10 /59

8-approximation for shortest (u, v)—path

Consider arbitrary u, v € S and its shortest path in G.

IS

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 11/59

8-approximation for shortest (u, v)—path

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 12 /59

Constructing a Low Hop Emulator

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 13 /59

Recursive subemulators

Set by < n.

Let the first subemulator Hy be the original graph G.

While |V(H;)| > b
Q@ Vv € V(H;), save By, p.(v)
@ Hi1 + SUBEMULATOR(H;, b))
© Update bj 1 « b} and i+ i+1

Output: Set of subemulators H; and set of balls B(v'),Vv' € H;

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Recursive subemulators

Andoni, Stein, Zhong (Columbia)

H,

Hy

Hy

Figure: Recursive subemulators

Low Hop Emulators and Applications April 20, 2020

Calculating distances from multiple subemulators

Let u, v be arbitrary vertices whose distance we want to compute.

d=0,i=0

u =u, vp =vVv

While u;, v; are not in the same ball:
Q d < d+du(q(ui), uj)) +du, (v, q(vi))
Q uit1 < q(uj), viy1 < q(vi)
Q@ i+ i+1

Return d + dy. (uj, vi).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 16 /59

Calculating distances from multiple subemulators

H,

u= Up

Figure: Traversing Hy

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 17 /59

Calculating distances from multiple subemulators

H,
o— o
Hy
51
Uy
Ho
ue.
) v

Figure: Traversing H

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Calculating distances from multiple subemulators

H,
Uo6—— 0 v,
Hy
@@ *
o
Ho
ue.

Figure: Traversing H»

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 19 /59

Calculating distances from multiple subemulators

H,
U0 o v,
Hy
@@ *
o
Hy
ue.

Figure: Near vertices exact distance

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 20 /59

Properties of a distance oracle

@ Number of subemulators is O(log log n)

@ Traversing up—down subemulators to get (u, v)-shortest path is
269(loglogn) — poly(log n)—approximation

© Store O(loglog n) subemulators and each vertex’s ball

April 20, 2020 21/59

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications

Constructing a Low Hop Emulator

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 22 /59

Collapsing towards a low—hop emulator

QO V «+ (V(Ho),O) U... (V(H,-), i) U (V(Ht), t)
@ Add the
© Keep all edges within each subemulator

© Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wr ((u, 1), (v.j)) = 27t~ max() . gy (u, v).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Collapsing towards a low—hop emulator

H,
e —— o
H,
Hy
Ug Vo
Figure: between levels

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 24 /59

Collapsing towards a low—hop emulator

H,
e
Hy
. "
©® @
'y
Hy

Ug \\\ [

Figure: Edges within a level

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 25 /59

Collapsing towards a low—hop emulator

H,
e
Hy
@ @
e
Hy
® e
R ?
Uy v N
0 @ o Vo

Figure: Edges between nearby vertices

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 26 /59

Collapsing towards a low—hop emulator

H,
%270 A
H,
. >
x271 @ ® J
e
Hy |
X272 . ® N
Uo @ o e Vo

Figure: Scaling edges

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 27 /59

Collapsing towards a low—hop emulator

@ Can remove copies of a vertex v, (v,0), (v,1),..., and preserve edges
by squishing all copies of vertex to bottom level

OK since have edges between (v, i) and (v,i+1)

are weight zero.

@ There always exists a shortest (u — v)—path with minimial edge
traversals without using blue edges

Close edges will be covered by green edges and far edges

will never be used.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Collapsing towards a low—hop emulator

H,
e
Hy
@ @
e
Hy
® e
R ?
Uy v N
0 @ o Vo

Figure: Almost low—hop emualtor

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 29 /59

Collapsing towards a low—hop emulator

H,
o fe)
Hy
° (]
] o
o
Hy
. ——
Ug @ e Vo

Figure: Removing redundant vertices

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Collapsing towards a low—hop emulator

H,
o o
Hy
° o
o o
o
Hy
° o
.
° 4 . [J
Uo . Vo
. °

Figure: Remove blue edges

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 31/59

Recap

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 32/59

High level approach:
@ Construct a subemulator
@ Recursive subemulators

© Collapse all subemulators down to a single graph — low—hop emulator

Our constructed graph H = (V/, F):
@ Shortest path requires O(loglog n) traversals
@ Distance is 279(98lg) — poly(log n)-approximated
@V =V
Q@ E|[|F|] = O(n- poly(log n))

[Corollary: H is a low—hop emulator.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Constructing a low—hop emulator (in parallel)

Assume that we have computer that allows concurrent reads and
concurrent writes (CRCW).

© Create the ball centered at v
@ Selecting vertices

© Adding edges

© Recursive subemulators

@ Collapsing towards a low—hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 33/59

Creating the ball centered at v (in parallel)

Uses path—doubling idea as done in Floyd—Warshall.

,

Lo(v) < closest b neighbors of v (including v itself)
For u € Lo(v), compute dist® (v, u)

Fori=1,..., t = [logn]:
Q Vv,ucV, set dist(i)(v, u) ¢ oo
@ Fix v € V. Consider (v, x, u) such that x € L;_1(v) and
u e Li_1(x). Update dist!) (v, u) if
dist' =Y (v, x) + dist =V (x, u) is smaller
© Forevery v € V, set L;(v) < closest b vertices

Output: B(v) ¢ L; and exact distance d(*) (v, -)

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 0

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 35/59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 1

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 36 /59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 2

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 37/59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 4

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 38/59

Creating the ball centered at v (in parallel)

[Lo(v) < closest b neighbors of v. Compute dist®) (v, u)

@ Use polylog depth and nearly work-efficient parallel sorting algorithm
= O(log? n) depth and O(mlog? n) work
e Initialize distance in O(1) depth and O(m) work

April 20, 2020 39/59

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications

Creating the ball centered at v (in parallel)

Fori=1,..., t = [logn]:
Q@ Vv,ucV, set dist(i)(v, u) < oo
@ Fix v € V. Consider (v, x, u) such that x € L;_1(v) and
u e Li_1(x). Update dist!) (v, u) if ...
© For every v € V, set Lj(v) < closest b vertices

We perform ball computations on each vertex in G or a subemulator H;.
Repeat log n times:

@ < b? vertex pairs per vertex v € V.

@ E[|V(H:)|] = O(n-poly(logn))/b? = O(n - poly(log n)) work and
O(1) depth per iteration

© Use sorting algorithm

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 40/59

Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
@ Construct S by sampling every vertex

@ If v € V is not near any vertex in S, add v to S
© Store the leader g(v) < closest vertex u € Stov € V

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
@ Construct S by sampling every vertex
@ If v € V is not near any vertex in S, add v to S

© Store the leader g(v) < closest vertex u € Stov € V

@ O(1) depth and O(n) work
@ Construct a ball. Check requires O(1) depth and O(n) work

@ Ditto

April 20, 2020

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications

Adding edges (in parallel)

Adding edges:
@ Forall (u,v) € E, add edge (q(u), q(v))

@ Fix v € V. Vu e B(v), add edge ((q(v),q(v))
When adding an edge e = (q(u), g(v)) to F, update weight

w(e) = min {w(e), (initialize to oo)
de(q(u), u) + dg(u,v) + dg(v,q(v))

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Adding edges (in parallel)

Adding edges:

@ For all (u,v) € E, add edge (q(u), q(v))
@ Fix v € V. Vu e B(v), add edge ((q(v),q(v))

w(e), (initialize to c0)

When adding an edge e = (q(u), g(v)) to F, update weight

dc(q(u),u) + dg(u,v) + dg(v,q(v))

@ Uses ball to compute exact distances. (1) depth and O(m) work

@ Ditto
@ Ditto

Andoni, Stein, Zhong (Columbia)

Low Hop Emulators and Applications

April 20, 2020

42 /59

Recursive subemulators (in parallel)

Set by < n.
Let the first subemulator Hy be the original graph G.

While |V(H;)| > bi:
@ Vv € V(H;), save By, p.(v)
@ H;;1 + SUBEMULATOR(H;, b;)
© Update bjy1 + b,-l'25 and i < i+1

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Recursive subemulators (in parallel)

Set by < n.
Let the first subemulator Hy be the original graph G.

While |V(H;)| > bi:
@ Vv € V(H;), save By, p.(v)
@ H;;1 + SUBEMULATOR(H;, b;)
© Update bjy1 + b,-l'25 and i < i+1

.

Repeat O(loglog n) times:
© Ball construction
© Proved is polylog depth and nearly linear
@ 0O(1)

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Collapsing towards a low—hop emulator (in parallel)

For every subemulator Ho, ..., Ho(iog iogn):
©Q Add the

© Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

we (0, v) = 270 Ly (u, v).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Collapsing towards a low—hop emulator (in parallel)

For every subemulator Ho, ..., Ho(iog iogn):
©Q Add the

© Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

we (0, v) = 270 Ly (u, v).

Repeat O(loglog n) for each subemulator
Q@ O(1) depth and O(n - poly(log n)) work
@ Ditto
© Weights: Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Constructing a low—hop emulator (in parallel)

Recap. Assuming we have a concurrent read, concurrent write
computational model, we can solve the following problems in polylog
depth and near linear work:

@ Create the ball centered at v
@ Selecting vertices
© Adding edges
© Recursive subemulators
@ Collapsing towards a low—hop emulator
Constructing a low—hop emulator can be done in same depth and work.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 45 /59

Applications

Compute the following problems with polylog approx, polylog depth, and
nearly linear work:

© SSSP via Bellman-Ford
@ Bourgain’s embedding
© Low diameter decomposition
@ Metric tree embedding

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 46 /59

Uncapacitated min—cost flow (transshipment) problem

Let W € R™*™ be a diagonal matrix of weights. Let A € R"*™ be the
incidence matrix,
1 : Jedge u=(ij)
Ay =1 —1: Jedgeu=(j,)
0 : otherwise

Find a vector f € IR™ such that

in || Wf
min || W,

s.t. Af = b,

where b € IR” is the demand vector, where we require }_ b; = 0.
i

\

If b(s) =1, b(t) = —1, then solves (s, t)-shortest path length.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Uncapacitated min—cost flow problem

An equivalent problem:

Let x = Wf. Find the optimal x* such that

P
x* = min ||x||;

st. AW lx = b.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 48 /59

Uncapacitated min—cost flow problem

An equivalent problem:

Let x = Wf. Find the optimal x* such that

P
x* = min ||x||;

st. AW lx = b.

Lemma: There exists (1 + €)—approximation algorithm to the op-
timization problem above in that runs in polylog depth if there
exists a matrix P such that

[Ix*[ly < [|Pblly < O(polylogn) - [|x*]; -

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Earth Movers Distance Problem

The Earth Mover's Distance (EMD) problem is

min Z m(u,v) - [|¢(u) — 4’(V>||1

7'(2V><V—)]R20 (U,V)GVXV
st. Vue V, Y m(uv)— Y n(v,u) = by
veV veV

Find a vector f € IR™ such that

in ||Wf
min || W

s.t. Af = b,

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Bourgain's Embedding

Theorem (Bourgain's Embedding)

Every metric space (V, dy) can be embedded in £, with distortion
O(log n).

Given a graph G = (V, E) and distance d : V x V — R™, there exists a
mapping ¢ : V — [A]90°8°) such that
d(u,v) <|[¢(u) —¢(v)|l; < O(logn)d(u,v),

where A < Y we.
ecE

Using Bourgain's embedding via low—hop emulators, we can find a
mapping ¢ : V — [A]" such that

OPTEMD(b) S O(PC"Y('Og n))OPTtransshipment(b)-

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 50 /59

Creating a preconditioner using grids
/ /)
/ / GU

Figure: Grids

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 51/59

Creating a preconditioner

/ o7 = G

Figure: Grids with points

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 52 /59

Creating a preconditioner

_ °° -

Figure: Points in same cell vs. random shift T

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 53 /59

Creating a preconditioner

Construct a series of L = 1+ log A grids G; as above.

Let T € [A] be a uniform random variable.

r

Lemma: Define the vector

hicy=1-2' D by,
veVigp(v)+t-1,€C

where i is the level of the grid (ie. G;) and C € G; is a cell. Then,

Q E.[||hl|{] < 2Ly - OPTemp(b)
@ |h|l; > OPTemp(b),

\.

where 77 = O(log? n).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Creating a preconditioner

Construct a vector A" such that E[|| h||;] = ||#]|;.

hZI,C,T) =1 Z by.
veVip(v)+t-1,€C

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 55/

Creating a preconditioner

Construct a vector A" such that E[|| h||;] = ||#]|;.

hZI,C,T) =1 Z by.
veVip(v)+t-1,€C

Prescribes a matrix P’ where

P _{17 Do(v)+T-1,eC

(LCTv) 0 ¢ otherwise

Then ' = P’b, and

Iy < [[#][; = [[P"b[|, < (poly(log m)) X"l

Andoni, Stein, Zhong (Columbia)

Low Hop Emulators and Applications

April 20, 2020 55 /59

Creating a preconditioner

4)

(i,Ct=0) n o
@i,C,t=1) 0
i\t =0) 0
@@C,t=1) n °

i ®
G.C,T = 0) 0 .
¢.Ct=1) 0] °

- _/

Figure: Preconditioner vs. Grids

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Uncapacitated min—cost flow problem

We want to solve the following problem:

r

Let x = Wf. Find the optimal x* such that
x* = min ||x
min x|

st. AW Ix = b.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

Uncapacitated min—cost flow problem

We want to solve the following problem:

r

Let x = Wf. Find the optimal x* such that
x* = min ||x
min x|

st. AW Ix = b.

Lemma: There exists (1 + ¢)—approximation algorithm to the op-
timization problem above in that runs in polylog depth using a
matrix P’ where

Ix*ly < || P'b[|; < O(poly log n) - [Ix7||; -

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020

@ Constructing a Low Hop Emulator
@ Constructing a subemulator
@ Recursive subemulators
@ Collapsing into a low—hop emulator
@ Constructing a low—hop emulator (in parallel)

© (1 +¢) shortest paths in polylog depth and nearly linear work
@ Solving shortest paths via optimization and Sherman’s framework

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 58 /59

Thanks. Questions?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 59 /59

	Constructing a Low Hop Emulator
	Constructing a subemulator
	Recursive subemulators
	Collapsing into a low–hop emulator
	Constructing a low–hop emulator (in parallel)

	(1+) shortest paths in polylog depth and nearly linear work
	Solving shortest paths via optimization and Sherman's framework

