
Parallel Approximate Undirected Shortest Paths Via
Low Hop Emulators

Alexandr Andoni, Clifford Stein, Peilin Zhong

Columbia University

April 20, 2020

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 1 / 59

Motivation for Parallel Algorithms

Assess the efficiency of parallel algorithms by analyzing:

Depth, DP(n), is length of the longest series of operations

Work, WP(n), is runtime in a sequential setting

We seek algorithms that are:

Polylog(arithmic) depth , DP(n) = O
(
poly(log n)

)
Nearly work-efficient, WP(n) = O

(
TS (n) · poly(log n)

)

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 2 / 59

Parallel algorithms for shortest paths problem

Given a (non–negative) weighted graph G = (V ,E) shortest
paths problem finds the shortest path from s → t in G .

The single source shortest paths problem is the shortest path from
s ∈ S to every vertex in V .

Let n = |V | and m = |E |. What algorithms are there?

Dijkstra’s algorithm requires O(m+ n · log(n)) work/depth

Bellman Ford requires O(nm) work and O(n) depth

Floyd–Warshall requires O(n3) work and O(log n) depth

Question: Does there exist a (1 + ε)–shortest paths algorithm with
O
(
m · poly(log n)

)
work and O(poly(log n)) depth?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 3 / 59

Parallel algorithms for shortest paths problem

Given a (non–negative) weighted graph G = (V ,E) shortest
paths problem finds the shortest path from s → t in G .

The single source shortest paths problem is the shortest path from
s ∈ S to every vertex in V .

Let n = |V | and m = |E |. What algorithms are there?

Dijkstra’s algorithm requires O(m+ n · log(n)) work/depth

Bellman Ford requires O(nm) work and O(n) depth

Floyd–Warshall requires O(n3) work and O(log n) depth

Question: Does there exist a (1 + ε)–shortest paths algorithm with
O
(
m · poly(log n)

)
work and O(poly(log n)) depth?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 3 / 59

Parallel algorithms for shortest paths problem

Given a (non–negative) weighted graph G = (V ,E) shortest
paths problem finds the shortest path from s → t in G .

The single source shortest paths problem is the shortest path from
s ∈ S to every vertex in V .

Let n = |V | and m = |E |. What algorithms are there?

Dijkstra’s algorithm requires O(m+ n · log(n)) work/depth

Bellman Ford requires O(nm) work and O(n) depth

Floyd–Warshall requires O(n3) work and O(log n) depth

Question: Does there exist a (1 + ε)–shortest paths algorithm with
O
(
m · poly(log n)

)
work and O(poly(log n)) depth?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 3 / 59

Previous and New Results

Previous Results

1 Use hopset [Coh94] to solve
(1 + ε)–shortest paths in
polylog depth and Ω(n2.1)
work

2 Any (1 + ε)–shortest paths
algorithm with polylog depth
using only hopsets requires
Ω(n1+ε′) work [ABP18]

This Paper

1 Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

2 Compute (1 + ε)–approximate
shortest path in polylog depth
and nearly linear work via
[She17] and low hop emulators

Given a graph G = (V ,E), a low hop emulator is a weighted
graph H = (V ,F) where any shortest (s − t)–path with
O(log log n) edge traversals and |F | = O

(
m · poly(log n)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4 / 59

Previous and New Results

Previous Results

1 Use hopset [Coh94] to solve
(1 + ε)–shortest paths in
polylog depth and Ω(n2.1)
work

2 Any (1 + ε)–shortest paths
algorithm with polylog depth
using only hopsets requires
Ω(n1+ε′) work [ABP18]

This Paper

1 Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

2 Compute (1 + ε)–approximate
shortest path in polylog depth
and nearly linear work via
[She17] and low hop emulators

Given a graph G = (V ,E), a low hop emulator is a weighted
graph H = (V ,F) where any shortest (s − t)–path with
O(log log n) edge traversals and |F | = O

(
m · poly(log n)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4 / 59

Previous and New Results

Previous Results

1 Use hopset [Coh94] to solve
(1 + ε)–shortest paths in
polylog depth and Ω(n2.1)
work

2 Any (1 + ε)–shortest paths
algorithm with polylog depth
using only hopsets requires
Ω(n1+ε′) work [ABP18]

This Paper

1 Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

2 Compute (1 + ε)–approximate
shortest path in polylog depth
and nearly linear work via
[She17] and low hop emulators

Given a graph G = (V ,E), a low hop emulator is a weighted
graph H = (V ,F) where any shortest (s − t)–path with
O(log log n) edge traversals and |F | = O

(
m · poly(log n)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4 / 59

Overview

1 Constructing a Low Hop Emulator
Constructing a subemulator
Recursive subemulators
Collapsing into a low–hop emulator
Constructing a low–hop emulator (in parallel)

2 (1 + ε) shortest paths in polylog depth and nearly linear work
Solving shortest paths via optimization and Sherman’s framework

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 5 / 59

Constructing a low hop emulator

To construct a low hop emulator,

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Every vertex v ∈ V is close to a vertex in S

2 Distances in H approximate distances in G

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 6 / 59

Constructing a low hop emulator

To construct a low hop emulator,

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Every vertex v ∈ V is close to a vertex in S

2 Distances in H approximate distances in G

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 6 / 59

Constructing a subemulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Select vertices first by sampling

2 Add more vertices to ensure vertex in V is close to a vertex in S
3 Add edges and assign weights so that local distances are

well–approximated

Our analysis depends on the ball BG ,b(v), which is the closest b vertices
(graph distance) to v in G ,

Figure: Ball
Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 7 / 59

Constructing a subemulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Select vertices first by sampling
2 Add more vertices to ensure vertex in V is close to a vertex in S

3 Add edges and assign weights so that local distances are
well–approximated

Our analysis depends on the ball BG ,b(v), which is the closest b vertices
(graph distance) to v in G ,

Figure: Ball
Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 7 / 59

Constructing a subemulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Select vertices first by sampling
2 Add more vertices to ensure vertex in V is close to a vertex in S
3 Add edges and assign weights so that local distances are

well–approximated

Our analysis depends on the ball BG ,b(v), which is the closest b vertices
(graph distance) to v in G ,

Figure: Ball
Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 7 / 59

Selecting vertices

Fix a ball size b (to be defined later).
1 Construct S by sampling every vertex with probability

p = min(50 log n
b , 1

2)

2 If v ∈ V is not near any vertex in S , add v to S

3 Store the leader q(v) ← closest vertex u ∈ S to v ∈ V

Output: A sparse vertex set S and mapping q : V → S

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 8 / 59

Adding edges

Adding edges:
1 For all (u, v) ∈ E , add edge

(
q(u), q(v)

)
2 Fix v ∈ V . ∀u ∈ B(v), add edge

(
(q(u), q(v)

)
When adding an edge e =

(
q(u), q(v)

)
to F , update weight

w
(
e
)
= min

{
w(e), (initialize to ∞)

dG (q(u), u) + dG (u, v) + dG (v , q(v))
.

Figure: Encoding existing edges
Figure: Encoding close edges

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 9 / 59

Properties of subemulators

Given a subemulator H = (S ,F ′), Size

E
[
|S |
]
< n

|F ′| ≤ m+ nb

Distance approximation

For any u, v ∈ S ,

dG (u, v) ≤ dH(u, v) ≤ 8 · dG (u, v).

For any u, v ∈ V ,

dH
(
q(u), q(v)

)
≤ dG

(
u, q(u)

)
+ 22 · dG (u, v) + dG

(
v , q(v)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 10 / 59

8-approximation for shortest (u, v)–path

Consider arbitrary u, v ∈ S and its shortest path in G .

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 11 / 59

8-approximation for shortest (u, v)–path

dH(u, v) ≤
t

∑
i=1

wH

(
q(yi−1), q(xi)

)
+ wH

(
q(xi), q(yi)

)
+ wH(yt , v)

≤ 8 ·
(t

∑
i=1

wG (yi−1, xi) + wG (xi , yi) + wG (yt , v)
)

= 8 · dG (u, v).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 12 / 59

Constructing a Low Hop Emulator

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 13 / 59

Recursive subemulators

Set b0 � n.

Let the first subemulator H0 be the original graph G .

While |V (Hi)| ≥ bi :
1 ∀v ∈ V (Hi), save BHi ,bi (v)

2 Hi+1 ← SUBEMULATOR(Hi , bi)

3 Update bi+1 ← b1.25i and i ← i + 1

Output: Set of subemulators Hi and set of balls B(v ′), ∀v ′ ∈ Hi

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 14 / 59

Recursive subemulators

Figure: Recursive subemulators

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 15 / 59

Calculating distances from multiple subemulators

Let u, v be arbitrary vertices whose distance we want to compute.

d = 0, i = 0
u0 = u, v0 = v
While ui , vi are not in the same ball:

1 d ← d + dHi

(
q(ui), ui)

)
+ dHi

(
v , q(vi)

)
2 ui+1 ← q(ui), vi+1 ← q(vi)

3 i ← i + 1
Return d + dHi

(ui , vi).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 16 / 59

Calculating distances from multiple subemulators

Figure: Traversing H0

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 17 / 59

Calculating distances from multiple subemulators

Figure: Traversing H1

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 18 / 59

Calculating distances from multiple subemulators

Figure: Traversing H2

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 19 / 59

Calculating distances from multiple subemulators

Figure: Near vertices exact distance

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 20 / 59

Properties of a distance oracle

1 Number of subemulators is O(log log n)

2 Traversing up–down subemulators to get (u, v)–shortest path is
26O(log log n) = poly(log n)–approximation

3 Store O(log log n) subemulators and each vertex’s ball

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 21 / 59

Constructing a Low Hop Emulator

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 22 / 59

Collapsing towards a low–hop emulator

1 V ′ ←
(
V (H0), 0

)⋃
. . .
(
V (Hi), i

)
. . .
⋃ (

V (Ht), t
)

2 Add the edge from a vertex up to its leaders in next level

3 Keep all edges within each subemulator

4 Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wF

(
(u, i), (v , j)

)
= 27t−max(i ,j) · dHi

(u, v).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 23 / 59

Collapsing towards a low–hop emulator

Figure: Edges between levels

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 24 / 59

Collapsing towards a low–hop emulator

Figure: Edges within a level

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 25 / 59

Collapsing towards a low–hop emulator

Figure: Edges between nearby vertices

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 26 / 59

Collapsing towards a low–hop emulator

Figure: Scaling edges

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 27 / 59

Collapsing towards a low–hop emulator

1 Can remove copies of a vertex v , (v , 0), (v , 1), . . ., and preserve edges
by squishing all copies of vertex to bottom level

OK since have orange edges between (v , i) and (v , i + 1)

are weight zero.

2 There always exists a shortest (u − v)–path with minimial edge
traversals without using blue edges

Close edges will be covered by green edges and far edges

will never be used.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 28 / 59

Collapsing towards a low–hop emulator

Figure: Almost low–hop emualtor

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 29 / 59

Collapsing towards a low–hop emulator

Figure: Removing redundant vertices

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 30 / 59

Collapsing towards a low–hop emulator

Figure: Remove blue edges

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 31 / 59

Recap

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

Our constructed graph H = (V ′,F):

1 Shortest path requires O(log log n) traversals

2 Distance is 27O(log log n) = poly(log n)–approximated

3 V ′ = V

4 E[|F |] = O
(
n · poly(log n)

)
Corollary: H is a low–hop emulator.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 32 / 59

Recap

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

Our constructed graph H = (V ′,F):

1 Shortest path requires O(log log n) traversals

2 Distance is 27O(log log n) = poly(log n)–approximated

3 V ′ = V

4 E[|F |] = O
(
n · poly(log n)

)
Corollary: H is a low–hop emulator.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 32 / 59

Constructing a low–hop emulator (in parallel)

Assume that we have computer that allows concurrent reads and
concurrent writes (CRCW).

1 Create the ball centered at v

2 Selecting vertices

3 Adding edges

4 Recursive subemulators

5 Collapsing towards a low–hop emulator

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 33 / 59

Creating the ball centered at v (in parallel)

Uses path–doubling idea as done in Floyd–Warshall.

L0(v)← closest b neighbors of v (including v itself)

For u ∈ L0(v), compute dist(0)(v , u)

For i = 1, . . . , t = dlog ne:
1 ∀v , u ∈ V , set dist(i)(v , u)← ∞
2 Fix v ∈ V . Consider (v , x , u) such that x ∈ Li−1(v) and

u ∈ Li−1(x). Update dist(i)(v , u) if

dist(i−1)(v , x) + dist(i−1)(x , u) is smaller

3 For every v ∈ V , set Li (v)← closest b vertices

Output: B(v)← Lt and exact distance d (t)(v , ·)

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 34 / 59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 0

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 35 / 59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 1

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 36 / 59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 2

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 37 / 59

Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 4

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 38 / 59

Creating the ball centered at v (in parallel)

L0(v)← closest b neighbors of v . Compute dist(0)(v , u)

Use polylog depth and nearly work-efficient parallel sorting algorithm
⇒ O(log2 n) depth and O(m log2 n) work

Initialize distance in O(1) depth and O(m) work

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 39 / 59

Creating the ball centered at v (in parallel)

For i = 1, . . . , t = dlog ne:
1 ∀v , u ∈ V , set dist(i)(v , u)← ∞
2 Fix v ∈ V . Consider (v , x , u) such that x ∈ Li−1(v) and

u ∈ Li−1(x). Update dist(i)(v , u) if . . .
3 For every v ∈ V , set Li (v)← closest b vertices

We perform ball computations on each vertex in G or a subemulator Hi .
Repeat log n times:

1 ≤ b2 vertex pairs per vertex v ∈ V .

2 E[|V (Hi)|] = O(n · poly(log n))/b2i ⇒ O(n · poly(log n)) work and
O(1) depth per iteration

3 Use sorting algorithm

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 40 / 59

Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
1 Construct S by sampling every vertex

2 If v ∈ V is not near any vertex in S , add v to S

3 Store the leader q(v) ← closest vertex u ∈ S to v ∈ V

1 O(1) depth and O(n) work

2 Construct a ball. Check requires O(1) depth and O(n) work

3 Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 41 / 59

Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
1 Construct S by sampling every vertex

2 If v ∈ V is not near any vertex in S , add v to S

3 Store the leader q(v) ← closest vertex u ∈ S to v ∈ V

1 O(1) depth and O(n) work

2 Construct a ball. Check requires O(1) depth and O(n) work

3 Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 41 / 59

Adding edges (in parallel)

Adding edges:
1 For all (u, v) ∈ E , add edge

(
q(u), q(v)

)
2 Fix v ∈ V . ∀u ∈ B(v), add edge

(
(q(u), q(v)

)
When adding an edge e =

(
q(u), q(v)

)
to F , update weight

w
(
e
)
= min

{
w(e), (initialize to ∞)

dG (q(u), u) + dG (u, v) + dG (v , q(v))
.

1 Uses ball to compute exact distances. O(1) depth and O(m) work

2 Ditto

3 Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 42 / 59

Adding edges (in parallel)

Adding edges:
1 For all (u, v) ∈ E , add edge

(
q(u), q(v)

)
2 Fix v ∈ V . ∀u ∈ B(v), add edge

(
(q(u), q(v)

)
When adding an edge e =

(
q(u), q(v)

)
to F , update weight

w
(
e
)
= min

{
w(e), (initialize to ∞)

dG (q(u), u) + dG (u, v) + dG (v , q(v))
.

1 Uses ball to compute exact distances. O(1) depth and O(m) work

2 Ditto

3 Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 42 / 59

Recursive subemulators (in parallel)

Set b0 � n.

Let the first subemulator H0 be the original graph G .

While |V (Hi)| ≥ bi :
1 ∀v ∈ V (Hi), save BHi ,bi (v)

2 Hi+1 ← SUBEMULATOR(Hi , bi)

3 Update bi+1 ← b1.25i and i ← i + 1

Repeat O(log log n) times:

1 Ball construction

2 Proved is polylog depth and nearly linear

3 O(1)

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 43 / 59

Recursive subemulators (in parallel)

Set b0 � n.

Let the first subemulator H0 be the original graph G .

While |V (Hi)| ≥ bi :
1 ∀v ∈ V (Hi), save BHi ,bi (v)

2 Hi+1 ← SUBEMULATOR(Hi , bi)

3 Update bi+1 ← b1.25i and i ← i + 1

Repeat O(log log n) times:

1 Ball construction

2 Proved is polylog depth and nearly linear

3 O(1)
Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 43 / 59

Collapsing towards a low–hop emulator (in parallel)

For every subemulator H0, . . . ,HO(log logn):
1 Add the edge from a vertex up to its leaders in next level

2 Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wF (u, v) = 27t−max(i ,j) · dHi
(u, v).

Repeat O(log log n) for each subemulator

1 O(1) depth and O
(
n · poly(log n)

)
work

2 Ditto

3 Weights: Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 44 / 59

Collapsing towards a low–hop emulator (in parallel)

For every subemulator H0, . . . ,HO(log logn):
1 Add the edge from a vertex up to its leaders in next level

2 Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wF (u, v) = 27t−max(i ,j) · dHi
(u, v).

Repeat O(log log n) for each subemulator

1 O(1) depth and O
(
n · poly(log n)

)
work

2 Ditto

3 Weights: Ditto

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 44 / 59

Constructing a low–hop emulator (in parallel)

Recap. Assuming we have a concurrent read, concurrent write
computational model, we can solve the following problems in polylog
depth and near linear work:

1 Create the ball centered at v

2 Selecting vertices

3 Adding edges

4 Recursive subemulators

5 Collapsing towards a low–hop emulator

Constructing a low–hop emulator can be done in same depth and work.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 45 / 59

Applications

Compute the following problems with polylog approx, polylog depth, and
nearly linear work:

1 SSSP via Bellman-Ford

2 Bourgain’s embedding

3 Low diameter decomposition

4 Metric tree embedding

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 46 / 59

Uncapacitated min–cost flow (transshipment) problem

Let W ∈ Rm×m be a diagonal matrix of weights. Let A ∈ Rn×m be the
incidence matrix,

Aiu =

1 : ∃ edge u = (i , j)

−1 : ∃ edge u = (j , i)

0 : otherwise

.

Find a vector f ∈ Rm such that

min
f ∈Rm

‖Wf ‖1
s.t. Af = b,

where b ∈ Rn is the demand vector, where we require ∑
i
bi = 0.

If b(s) = 1, b(t) = −1, then solves (s, t)–shortest path length.
Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 47 / 59

Uncapacitated min–cost flow problem

An equivalent problem:

Let x = Wf . Find the optimal x∗ such that

x∗ = min
xRm
‖x‖1
s.t. AW−1x = b.

Lemma: There exists (1+ ε)–approximation algorithm to the op-
timization problem above in that runs in polylog depth if there
exists a matrix P such that

‖x∗‖1 ≤ ‖Pb‖1 ≤ O(poly log n) · ‖x∗‖1 .

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 48 / 59

Uncapacitated min–cost flow problem

An equivalent problem:

Let x = Wf . Find the optimal x∗ such that

x∗ = min
xRm
‖x‖1
s.t. AW−1x = b.

Lemma: There exists (1+ ε)–approximation algorithm to the op-
timization problem above in that runs in polylog depth if there
exists a matrix P such that

‖x∗‖1 ≤ ‖Pb‖1 ≤ O(poly log n) · ‖x∗‖1 .

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 48 / 59

Earth Movers Distance Problem

The Earth Mover’s Distance (EMD) problem is

min
π:V×V→R≥0

∑
(u,v)∈V×V

π(u, v) · ‖φ(u)− φ(v)‖1

s.t. ∀u ∈ V , ∑
v∈V

π(u, v)− ∑
v∈V

π(v , u) = bu.

Find a vector f ∈ Rm such that

min
f ∈Rm

‖Wf ‖1
s.t. Af = b,

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 49 / 59

Bourgain’s Embedding

Theorem (Bourgain’s Embedding)

Every metric space (V , dV) can be embedded in `p with distortion
O(log n).

Given a graph G = (V ,E) and distance d : V × V → R+, there exists a

mapping φ : V → [∆]O(log
2 n) such that

d(u, v) ≤ ‖φ(u)− φ(v)‖1 ≤ O(log n)d(u, v),

where ∆ ≤ ∑
e∈E

we .

Using Bourgain’s embedding via low–hop emulators, we can find a
mapping φ : V → [∆]η such that

OPTEMD(b) ≤ O(poly(log n))OPTtransshipment(b).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 50 / 59

Creating a preconditioner using grids

Figure: Grids

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 51 / 59

Creating a preconditioner

Figure: Grids with points

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 52 / 59

Creating a preconditioner

Figure: Points in same cell vs. random shift τ

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 53 / 59

Creating a preconditioner

Construct a series of L = 1 + log ∆ grids Gi as above.

Let τ ∈ [∆] be a uniform random variable.

Lemma: Define the vector

h(i ,C) = η · 2i ∑
v∈V :φ(v)+τ·1η∈C

bv ,

where i is the level of the grid (ie. Gi) and C ∈ Gi is a cell. Then,

1 Eτ[‖h‖1] ≤ 2Lη ·OPTEMD(b)

2 ‖h‖1 ≥ OPTEMD(b),

where η = O(log2 n).

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 54 / 59

Creating a preconditioner

Construct a vector h′ such that E
[
‖h‖1

]
= ‖h′‖1,

h′(i ,C ,τ) = η · ∑
v∈V :φ(v)+τ·1η∈C

bv .

Prescribes a matrix P ′ where

P ′(i ,C ,τ),v =

{
η : φ(v) + τ · 1η ∈ C

0 : otherwise
.

Then h′ = P ′b, and

‖x∗‖1 ≤
∥∥h′∥∥

1
=
∥∥P ′b∥∥

1
≤ (poly(log n)) ‖x∗‖1

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 55 / 59

Creating a preconditioner

Construct a vector h′ such that E
[
‖h‖1

]
= ‖h′‖1,

h′(i ,C ,τ) = η · ∑
v∈V :φ(v)+τ·1η∈C

bv .

Prescribes a matrix P ′ where

P ′(i ,C ,τ),v =

{
η : φ(v) + τ · 1η ∈ C

0 : otherwise
.

Then h′ = P ′b, and

‖x∗‖1 ≤
∥∥h′∥∥

1
=
∥∥P ′b∥∥

1
≤ (poly(log n)) ‖x∗‖1

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 55 / 59

Creating a preconditioner

Figure: Preconditioner vs. Grids

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 56 / 59

Uncapacitated min–cost flow problem

We want to solve the following problem:

Let x = Wf . Find the optimal x∗ such that

x∗ = min
xRm
‖x‖1
s.t. AW−1x = b.

Lemma: There exists (1+ ε)–approximation algorithm to the op-
timization problem above in that runs in polylog depth using a
matrix P ′ where

‖x∗‖1 ≤
∥∥P ′b∥∥

1
≤ O(poly log n) · ‖x∗‖1 .

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 57 / 59

Uncapacitated min–cost flow problem

We want to solve the following problem:

Let x = Wf . Find the optimal x∗ such that

x∗ = min
xRm
‖x‖1
s.t. AW−1x = b.

Lemma: There exists (1+ ε)–approximation algorithm to the op-
timization problem above in that runs in polylog depth using a
matrix P ′ where

‖x∗‖1 ≤
∥∥P ′b∥∥

1
≤ O(poly log n) · ‖x∗‖1 .

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 57 / 59

Summary

1 Constructing a Low Hop Emulator
Constructing a subemulator
Recursive subemulators
Collapsing into a low–hop emulator
Constructing a low–hop emulator (in parallel)

2 (1 + ε) shortest paths in polylog depth and nearly linear work
Solving shortest paths via optimization and Sherman’s framework

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 58 / 59

Fin

Thanks. Questions?

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 59 / 59

	Constructing a Low Hop Emulator
	Constructing a subemulator
	Recursive subemulators
	Collapsing into a low–hop emulator
	Constructing a low–hop emulator (in parallel)

	(1+) shortest paths in polylog depth and nearly linear work
	Solving shortest paths via optimization and Sherman's framework

