Parallel Approximate Undirected Shortest Paths Via Low Hop Emulators

Alexandr Andoni, Clifford Stein, Peilin Zhong

Columbia University

April 20, 2020

Assess the efficiency of parallel algorithms by analyzing:

- Depth, $D_P(n)$, is length of the longest series of operations
- Work, $W_P(n)$, is runtime in a sequential setting

We seek algorithms that are:

- Polylog(arithmic) depth , $D_P(n) = \mathcal{O}(\operatorname{poly}(\log n))$
- Nearly work-efficient, $W_P(n) = \mathcal{O}(T_S(n) \cdot \text{poly}(\log n))$

Given a (non-negative) weighted graph G = (V, E) shortest paths problem finds the shortest path from $s \rightarrow t$ in G.

The single source shortest paths problem is the shortest path from $s \in S$ to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?

Given a (non-negative) weighted graph G = (V, E) shortest paths problem finds the shortest path from $s \rightarrow t$ in G.

The single source shortest paths problem is the shortest path from $s \in S$ to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?

- Dijkstra's algorithm requires $\mathcal{O}(m + n \cdot \log(n))$ work/depth
- Bellman Ford requires $\mathcal{O}(nm)$ work and $\mathcal{O}(n)$ depth
- Floyd–Warshall requires $\mathcal{O}(n^3)$ work and $\mathcal{O}(\log n)$ depth

Given a (non-negative) weighted graph G = (V, E) shortest paths problem finds the shortest path from $s \rightarrow t$ in G.

The single source shortest paths problem is the shortest path from $s \in S$ to every vertex in V.

Let n = |V| and m = |E|. What algorithms are there?

- Dijkstra's algorithm requires $\mathcal{O}(m + n \cdot \log(n))$ work/depth
- Bellman Ford requires $\mathcal{O}(nm)$ work and $\mathcal{O}(n)$ depth
- Floyd–Warshall requires $\mathcal{O}(n^3)$ work and $\mathcal{O}(\log n)$ depth

Question: Does there exist a $(1 + \varepsilon)$ -shortest paths algorithm with $\mathcal{O}(m \cdot \operatorname{poly}(\log n))$ work and $\mathcal{O}(\operatorname{poly}(\log n))$ depth?

Previous and New Results

Previous Results

- Use hopset [Coh94] to solve $(1 + \varepsilon)$ -shortest paths in polylog depth and $\Omega(n^{2.1})$ work
- Any $(1 + \varepsilon)$ -shortest paths algorithm with polylog depth using only hopsets requires $\Omega(n^{1+\varepsilon'})$ work [ABP18]

Previous and New Results

Previous Results

- Use hopset [Coh94] to solve $(1 + \varepsilon)$ -shortest paths in polylog depth and $\Omega(n^{2.1})$ work
- Any (1 + ε)-shortest paths algorithm with polylog depth using only hopsets requires Ω(n^{1+ε'}) work [ABP18]

This Paper

- Construct a novel data structure, a low hop emulator, to solve approximate single source shortest paths
- Compute (1 + ε)-approximate shortest path in polylog depth and nearly linear work via [She17] and low hop emulators

Previous and New Results

Previous Results

- Use hopset [Coh94] to solve $(1 + \varepsilon)$ -shortest paths in polylog depth and $\Omega(n^{2.1})$ work
- Any (1 + ε)-shortest paths algorithm with polylog depth using only hopsets requires Ω(n^{1+ε'}) work [ABP18]

This Paper

- Construct a novel data structure, a low hop emulator, to solve approximate single source shortest paths
- Compute (1 + ε)-approximate shortest path in polylog depth and nearly linear work via [She17] and low hop emulators

Given a graph G = (V, E), a low hop emulator is a weighted graph H = (V, F) where any shortest (s - t)-path with $\mathcal{O}(\log \log n)$ edge traversals and $|F| = \mathcal{O}(m \cdot \operatorname{poly}(\log n))$.

Constructing a Low Hop Emulator

- Constructing a subemulator
- Recursive subemulators
- Collapsing into a low-hop emulator
- Constructing a low-hop emulator (in parallel)

(1 + ε) shortest paths in polylog depth and nearly linear work
 Solving shortest paths via optimization and Sherman's framework

Constructing a low hop emulator

To construct a low hop emulator,

- Construct a subemulator
- Recursive subemulators
- $\textcircled{O} \quad \text{Collapse all subemulators down to a single graph} \rightarrow \text{low-hop emulator}$

Constructing a low hop emulator

To construct a low hop emulator,

- Construct a subemulator
- Recursive subemulators
- ${f 0}$ Collapse all subemulators down to a single graph ightarrow low-hop emulator

A subemulator is a graph H = (S, F') where $S \subset V$ and F' is a weighted edge set that approximates distances well.

- Every vertex $v \in V$ is close to a vertex in S
- ② Distances in H approximate distances in G

Constructing a subemulator

A subemulator is a graph H = (S, F') where $S \subset V$ and F' is a weighted edge set that approximates distances well.

Select vertices first by sampling

Our analysis depends on the ball $B_{G,b}(v)$, which is the closest *b* vertices (graph distance) to *v* in *G*,

Constructing a subemulator

A subemulator is a graph H = (S, F') where $S \subset V$ and F' is a weighted edge set that approximates distances well.

- Select vertices first by sampling
- 2 Add more vertices to ensure vertex in V is close to a vertex in S

Our analysis depends on the ball $B_{G,b}(v)$, which is the closest *b* vertices (graph distance) to *v* in *G*,

Constructing a subemulator

A subemulator is a graph H = (S, F') where $S \subset V$ and F' is a weighted edge set that approximates distances well.

- Select vertices first by sampling
- 2 Add more vertices to ensure vertex in V is close to a vertex in S
- Add edges and assign weights so that local distances are well-approximated

Our analysis depends on the ball $B_{G,b}(v)$, which is the closest *b* vertices (graph distance) to *v* in *G*,

Fix a ball size b (to be defined later).

- Construct S by sampling every vertex with probability $p = \min(50 \frac{\log n}{b}, \frac{1}{2})$
- **2** If $v \in V$ is not near any vertex in S, add v to S
- $\textbf{Store the leader } q(v) \leftarrow \text{closest vertex } u \in S \text{ to } v \in V$

Output: A sparse vertex set S and mapping $q: V \rightarrow S$

Adding edges

Adding edges:

• For all $(u, v) \in E$, add edge (q(u), q(v))

2 Fix
$$v \in V$$
. $\forall u \in B(v)$, add edge $((q(u), q(v)))$

When adding an edge e = (q(u), q(v)) to F, update weight

$$w(e) = \min \begin{cases} w(e), \text{ (initialize to } \infty) \\ d_G(q(u), u) + d_G(u, v) + d_G(v, q(v)) \end{cases}$$

Properties of subemulators

Given a subemulator H = (S, F'), Size

•
$$\mathbb{E}[|S|] < n$$

•
$$|F'| \leq m + nb$$

Distance approximation

• For any $u, v \in S$,

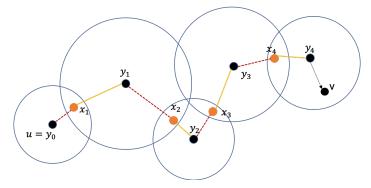
$$d_G(u, v) \leq d_H(u, v) \leq 8 \cdot d_G(u, v).$$

• For any $u, v \in V$,

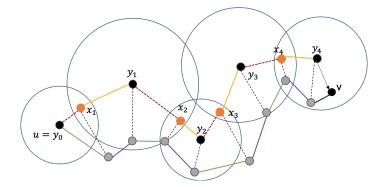
$$d_H(q(u),q(v)) \leq d_G(u,q(u)) + 22 \cdot d_G(u,v) + d_G(v,q(v)).$$

8-approximation for shortest (u, v)-path

Consider arbitrary $u, v \in S$ and its shortest path in G.



8-approximation for shortest (u, v)-path



$$d_{H}(u, v) \leq \sum_{i=1}^{t} w_{H}(q(y_{i-1}), q(x_{i})) + w_{H}(q(x_{i}), q(y_{i})) + w_{H}(y_{t}, v)$$

$$\leq 8 \cdot \left(\sum_{i=1}^{t} w_{G}(y_{i-1}, x_{i}) + w_{G}(x_{i}, y_{i}) + w_{G}(y_{t}, v)\right)$$

$$= 8 \cdot d_{G}(u, v).$$

High level approach:

- Construct a subemulator
- 2 Recursive subemulators
- $\textcircled{O} Collapse all subemulators down to a single graph \rightarrow \mathsf{low-hop} \ \mathsf{emulator}$

Set $b_0 \ll n$. Let the first subemulator H_0 be the original graph G. While $|V(H_i)| > b_i$: • $\forall v \in V(H_i)$, save $B_{H_i, h_i}(v)$ 2 $H_{i+1} \leftarrow \text{SUBEMULATOR}(H_i, b_i)$ **③** Update $b_{i+1} \leftarrow b_i^{1.25}$ and $i \leftarrow i+1$ Output: Set of subemulators H_i and set of balls B(v'), $\forall v' \in H_i$

Recursive subemulators

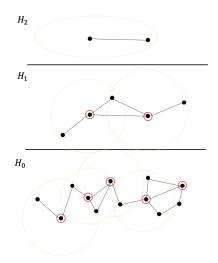


Figure: Recursive subemulators

Let u, v be arbitrary vertices whose distance we want to compute.

$$d = 0, i = 0$$

$$u_0 = u, v_0 = v$$

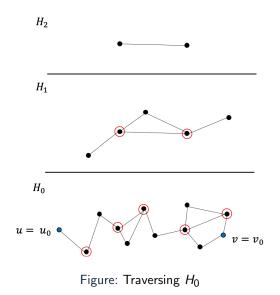
While u_i, v_i are not in the same ball:

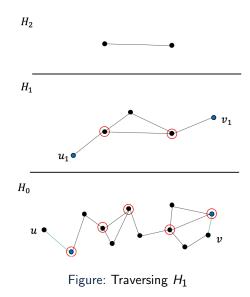
$$d \leftarrow d + d_{H_i}(q(u_i), u_i)) + d_{H_i}(v, q(v_i))$$

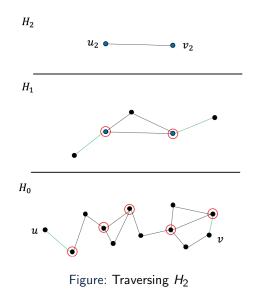
$$u_{i+1} \leftarrow q(u_i), v_{i+1} \leftarrow q(v_i)$$

$$i \leftarrow i + 1$$

Return $d + d_{H_i}(u_i, v_i)$.







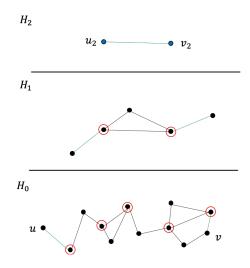
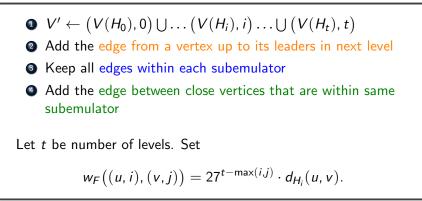


Figure: Near vertices exact distance

- Number of subemulators is $\mathcal{O}(\log \log n)$
- **2** Traversing up-down subemulators to get (u, v)-shortest path is $26^{\mathcal{O}(\log \log n)} = \operatorname{poly}(\log n)$ -approximation
- Store $\mathcal{O}(\log \log n)$ subemulators and each vertex's ball

High level approach:

- Construct a subemulator
- ② Recursive subemulators
- $\textcircled{O} Collapse all subemulators down to a single graph \rightarrow \mathsf{low-hop} \ \mathsf{emulator}$



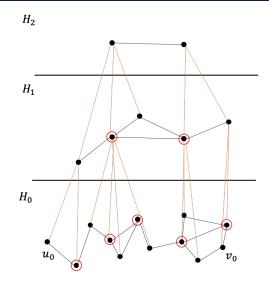


Figure: Edges between levels

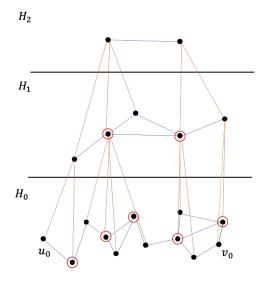


Figure: Edges within a level

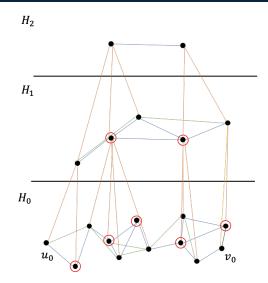


Figure: Edges between nearby vertices

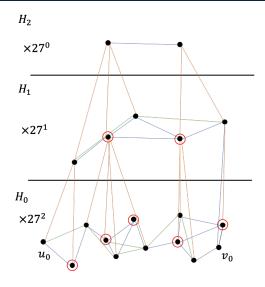


Figure: Scaling edges

Can remove copies of a vertex v, (v, 0), (v, 1), ..., and preserve edges by squishing all copies of vertex to bottom level

OK since have orange edges between (v, i) and (v, i+1) are weight zero.

There always exists a shortest (u - v)-path with minimial edge traversals without using blue edges

Close edges will be covered by green edges and far edges will never be used.

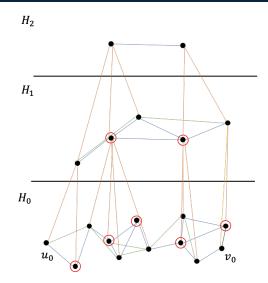


Figure: Almost low-hop emualtor

Collapsing towards a low-hop emulator

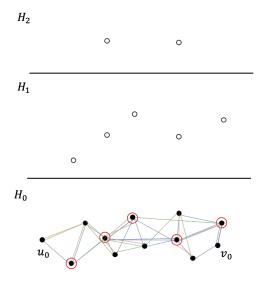


Figure: Removing redundant vertices

Collapsing towards a low-hop emulator

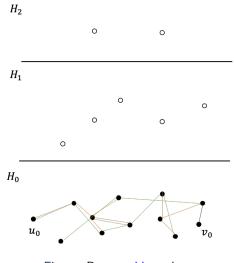


Figure: Remove blue edges

Recap

High level approach:

- Construct a subemulator
- 2 Recursive subemulators
- $\textcircled{O} Collapse all subemulators down to a single graph \rightarrow \mathsf{low-hop} \ \mathsf{emulator}$

Recap

High level approach:

- Construct a subemulator
- Recursive subemulators
- $\textcircled{O} \quad \text{Collapse all subemulators down to a single graph} \rightarrow \text{low-hop emulator}$

Our constructed graph H = (V', F):

- Shortest path requires $\mathcal{O}(\log \log n)$ traversals
- **②** Distance is $27^{\mathcal{O}(\log \log n)} = \operatorname{poly}(\log n) \operatorname{approximated}$

3
$$V' = V$$

•
$$\mathbb{E}[|F|] = \mathcal{O}(n \cdot \operatorname{poly}(\log n))$$

Corollary: H is a low-hop emulator.

Assume that we have computer that allows concurrent reads and concurrent writes (CRCW).

- Selecting vertices
- Adding edges
- Recursive subemulators
- Ollapsing towards a low-hop emulator

Uses path-doubling idea as done in Floyd-Warshall.

$$L_{0}(v) \leftarrow \text{closest } b \text{ neighbors of } v \text{ (including } v \text{ itself)}$$

For $u \in L_{0}(v)$, compute $\text{dist}^{(0)}(v, u)$
For $i = 1, \dots, t = \lceil \log n \rceil$:
 $\bullet \forall v, u \in V$, set $\text{dist}^{(i)}(v, u) \leftarrow \infty$
 $\bullet \text{ Fix } v \in V.$ Consider (v, x, u) such that $x \in L_{i-1}(v)$ and $u \in L_{i-1}(x)$. Update $\text{dist}^{(i)}(v, u)$ if $\text{dist}^{(i-1)}(v, x) + \text{dist}^{(i-1)}(x, u)$ is smaller
 $\bullet \text{ For every } v \in V$, set $L_{i}(v) \leftarrow \text{closest } b$ vertices
 $\text{Output: } B(v) \leftarrow L_{t} \text{ and exact distance } d^{(t)}(v, \cdot)$

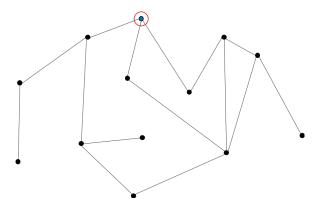


Figure: Expanding ball with b = 5. Reach of 0

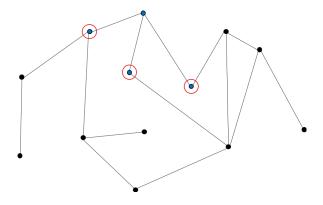


Figure: Expanding ball with b = 5. Reach of 1

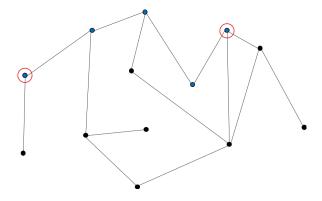


Figure: Expanding ball with b = 5. Reach of 2

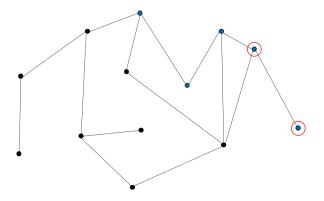


Figure: Expanding ball with b = 5. Reach of 4

 $L_0(v) \leftarrow \text{closest } b \text{ neighbors of } v.$ Compute $\text{dist}^{(0)}(v, u)$

- Use polylog depth and nearly work-efficient parallel sorting algorithm $\Rightarrow \mathcal{O}(\log^2 n)$ depth and $\mathcal{O}(m \log^2 n)$ work
- \bullet Initialize distance in $\mathcal{O}(1)$ depth and $\mathcal{O}(m)$ work

For
$$i = 1, ..., t = \lceil \log n \rceil$$
:
• $\forall v, u \in V$, set $dist^{(i)}(v, u) \leftarrow \infty$
• Fix $v \in V$. Consider (v, x, u) such that $x \in L_{i-1}(v)$ and $u \in L_{i-1}(x)$. Update $dist^{(i)}(v, u)$ if ...
• For every $v \in V$, set $L_i(v) \leftarrow$ closest b vertices

We perform ball computations on each vertex in G or a subemulator H_i . Repeat log n times:

- $\leq b^2$ vertex pairs per vertex $v \in V$.
- Use sorting algorithm

Fix a ball size b (to be defined later).

- Construct S by sampling every vertex
- 2 If $v \in V$ is not near any vertex in S, add v to S
- **③** Store the leader $q(v) \leftarrow$ closest vertex $u \in S$ to $v \in V$

Fix a ball size b (to be defined later).

- Construct S by sampling every vertex
- **2** If $v \in V$ is not near any vertex in S, add v to S
- Store the leader $q(v) \leftarrow$ closest vertex $u \in S$ to $v \in V$

- $\ \, {\cal O}(1) \ {\rm depth} \ {\rm and} \ {\cal O}(n) \ {\rm work} \ \,$
- Oitto

Adding edges (in parallel)

Adding edges:

• For all $(u, v) \in E$, add edge (q(u), q(v))

2 Fix $v \in V$. $\forall u \in B(v)$, add edge ((q(u), q(v)))

When adding an edge e = (q(u), q(v)) to F, update weight

$$w(e) = \min \begin{cases} w(e), \text{ (initialize to } \infty) \\ d_G(q(u), u) + d_G(u, v) + d_G(v, q(v)) \end{cases}$$

Adding edges (in parallel)

Adding edges:

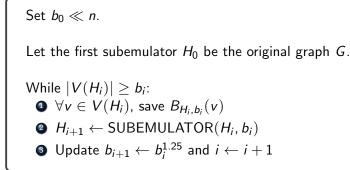
- For all $(u, v) \in E$, add edge (q(u), q(v))
- **2** Fix $v \in V$. $\forall u \in B(v)$, add edge ((q(u), q(v)))

When adding an edge e = (q(u), q(v)) to F, update weight

$$w(e) = \min \begin{cases} w(e), \text{ (initialize to } \infty) \\ d_G(q(u), u) + d_G(u, v) + d_G(v, q(v)) \end{cases}$$

- ${\small O } \ {\small Uses ball to compute exact distances. } {\small {\cal O}(1) \ {\small depth and } {\small {\cal O}(m) \ {\small work}}$
- 2 Ditto
- Oitto

Recursive subemulators (in parallel)



Recursive subemulators (in parallel)

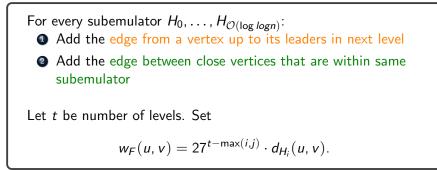
Set
$$b_0 \ll n$$
.
Let the first subemulator H_0 be the original graph G .
While $|V(H_i)| \ge b_i$:
 $\forall v \in V(H_i)$, save $B_{H_i,b_i}(v)$
 $H_{i+1} \leftarrow \text{SUBEMULATOR}(H_i, b_i)$
 $\forall Update b_{i+1} \leftarrow b_i^{1.25} \text{ and } i \leftarrow i+1$

Repeat $\mathcal{O}(\log \log n)$ times:

- Ball construction
- Proved is polylog depth and nearly linear
- 3 O(1)

Collapsing towards a low-hop emulator (in parallel)

For every subemulator H₀,..., H_{O(log logn)}:
Add the edge from a vertex up to its leaders in next level
Add the edge between close vertices that are within same subemulator
Let t be number of levels. Set
w_F(u, v) = 27^{t-max(ij)} ⋅ d_{Hi}(u, v).



Repeat $\mathcal{O}(\log \log n)$ for each subemulator

- $\mathcal{O}(1)$ depth and $\mathcal{O}(n \cdot \operatorname{poly}(\log n))$ work
- 2 Ditto
- Weights: Ditto

Recap. Assuming we have a concurrent read, concurrent write computational model, we can solve the following problems in polylog depth and near linear work:

- Selecting vertices
- Adding edges
- Recursive subemulators
- Sollapsing towards a low-hop emulator

Constructing a low-hop emulator can be done in same depth and work.

Compute the following problems with polylog approx, polylog depth, and nearly linear work:

- SSSP via Bellman-Ford
- Ø Bourgain's embedding
- O Low diameter decomposition
- Metric tree embedding

Uncapacitated min-cost flow (transshipment) problem

Let $W \in \mathbb{R}^{m \times m}$ be a diagonal matrix of weights. Let $A \in \mathbb{R}^{n \times m}$ be the incidence matrix,

$$A_{iu} = \begin{cases} 1 : \exists edge \ u = (i, j) \\ -1 : \exists edge \ u = (j, i) \\ 0 : otherwise \end{cases}$$

Find a vector $f \in \mathbb{R}^m$ such that $\min_{f \in \mathbb{R}^m} ||Wf||_1$ s.t. Af = b, where $b \in \mathbb{R}^n$ is the demand vector, where we require $\sum_i b_i = 0$.

If
$$b(s) = 1$$
, $b(t) = -1$, then solves (s, t) -shortest path length

Andoni, Stein, Zhong (Columbia)

Low Hop Emulators and Applications

Uncapacitated min-cost flow problem

An equivalent problem:

Let x = Wf. Find the optimal x^* such that $x^* = \min_{x \mathbb{R}^m} ||x||_1$ s.t. $AW^{-1}x = b$.

Uncapacitated min-cost flow problem

An equivalent problem:

Let x = Wf. Find the optimal x^* such that $x^* = \min_{x \mathbb{R}^m} ||x||_1$ s.t. $AW^{-1}x = b$.

Lemma: There exists $(1 + \varepsilon)$ -approximation algorithm to the optimization problem above in that runs in polylog depth if there exists a matrix P such that

 $||x^*||_1 \le ||Pb||_1 \le \mathcal{O}(\text{poly}\log n) \cdot ||x^*||_1$.

The Earth Mover's Distance (EMD) problem is

$$\min_{\pi: V \times V \to \mathbb{R}_{\geq 0}} \sum_{\substack{(u, v) \in V \times V}} \pi(u, v) \cdot \|\phi(u) - \phi(v)\|_{1}$$
s.t. $\forall u \in V, \sum_{v \in V} \pi(u, v) - \sum_{v \in V} \pi(v, u) = b_{u}.$

Find a vector $f \in \mathbb{R}^m$ such that

$$\min_{f \in \mathbb{R}^m} \|Wf\|_1$$
s.t. $Af = b$,

Theorem (Bourgain's Embedding)

Every metric space (V, d_V) can be embedded in ℓ_p with distortion $\mathcal{O}(\log n)$.

Given a graph G = (V, E) and distance $d: V \times V \to \mathbb{R}^+$, there exists a mapping $\phi: V \to [\Delta]^{\mathcal{O}(\log^2 n)}$ such that

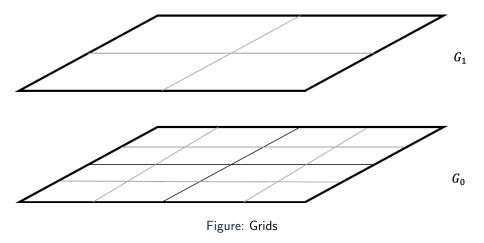
$$d(u, v) \leq \|\phi(u) - \phi(v)\|_1 \leq \mathcal{O}(\log n)d(u, v),$$

where $\Delta \leq \sum_{e \in E} w_e$.

Using Bourgain's embedding via low–hop emulators, we can find a mapping $\phi: V \to [\Delta]^\eta$ such that

$$\mathsf{OPT}_{\mathit{EMD}}(b) \leq \mathcal{O}(\mathsf{poly}(\log n))\mathsf{OPT}_{\mathit{transshipment}}(b).$$

Creating a preconditioner using grids



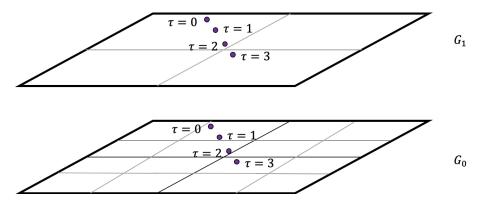


Figure: Grids with points

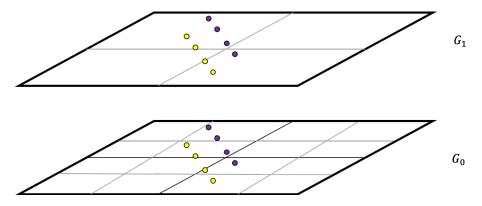
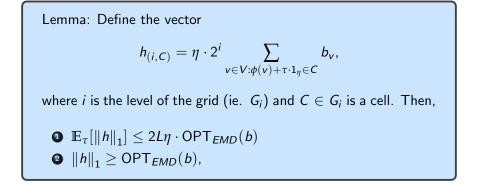


Figure: Points in same cell vs. random shift $\boldsymbol{\tau}$

Construct a series of $L = 1 + \log \Delta$ grids G_i as above.

Let $\tau \in [\Delta]$ be a uniform random variable.



where $\eta = \mathcal{O}(\log^2 n)$.

Construct a vector h' such that $\mathbb{E}[\|h\|_1] = \|h'\|_1$,

$$h'_{(i,C,\tau)} = \eta \cdot \sum_{v \in V: \phi(v) + \tau \cdot \mathbf{1}_{\eta} \in C} b_v.$$

Construct a vector h' such that $\mathbb{E}[\|h\|_1] = \|h'\|_1$,

$$h'_{(i,C,\tau)} = \eta \cdot \sum_{v \in V: \phi(v) + \tau \cdot \mathbf{1}_{\eta} \in C} b_v.$$

Prescribes a matrix P' where

$$\mathcal{P}'_{(i,\mathcal{C}, au),\mathbf{v}} = egin{cases} \eta &: \ \phi(\mathbf{v}) + au \cdot \mathbf{1}_\eta \in \mathcal{C} \ 0 &: \ ext{otherwise} \end{cases}$$

Then h' = P'b, and

$$\left\|\boldsymbol{x}^*\right\|_1 \leq \left\|\boldsymbol{h}'\right\|_1 = \left\|\boldsymbol{P}'\boldsymbol{b}\right\|_1 \leq \left(\operatorname{poly}(\log n)\right) \left\|\boldsymbol{x}^*\right\|_1$$

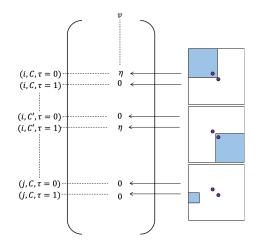


Figure: Preconditioner vs. Grids

Uncapacitated min-cost flow problem

We want to solve the following problem:

Let
$$x = Wf$$
. Find the optimal x^* such that
 $x^* = \min_{x \in \mathbb{R}^m} ||x||_1$
s.t. $AW^{-1}x = b$.

Uncapacitated min-cost flow problem

We want to solve the following problem:

Let
$$x = Wf$$
. Find the optimal x^* such that
 $x^* = \min_{x \in \mathbb{R}^m} ||x||_1$
s.t. $AW^{-1}x = b$.

Lemma: There exists $(1+\varepsilon)-$ approximation algorithm to the optimization problem above in that runs in polylog depth using a matrix P' where

$$\|x^*\|_1 \le \|P'b\|_1 \le \mathcal{O}(\operatorname{poly}\log n) \cdot \|x^*\|_1$$
 .

Constructing a Low Hop Emulator

- Constructing a subemulator
- Recursive subemulators
- Collapsing into a low-hop emulator
- Constructing a low-hop emulator (in parallel)

(1 + ε) shortest paths in polylog depth and nearly linear work
 Solving shortest paths via optimization and Sherman's framework

Thanks. Questions?