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Motivation for Parallel Algorithms

Assess the efficiency of parallel algorithms by analyzing:

Depth, DP(n), is length of the longest series of operations

Work, WP(n), is runtime in a sequential setting

We seek algorithms that are:

Polylog(arithmic) depth , DP(n) = O
(
poly(log n)

)
Nearly work-efficient, WP(n) = O

(
TS (n) · poly(log n)

)
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Parallel algorithms for shortest paths problem

Given a (non–negative) weighted graph G = (V ,E ) shortest
paths problem finds the shortest path from s → t in G .

The single source shortest paths problem is the shortest path from
s ∈ S to every vertex in V .

Let n = |V | and m = |E |. What algorithms are there?

Dijkstra’s algorithm requires O(m+ n · log(n)) work/depth

Bellman Ford requires O(nm) work and O(n) depth

Floyd–Warshall requires O(n3) work and O(log n) depth

Question: Does there exist a (1 + ε)–shortest paths algorithm with
O
(
m · poly(log n)

)
work and O(poly(log n)) depth?
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Previous and New Results

Previous Results

1 Use hopset [Coh94] to solve
(1 + ε)–shortest paths in
polylog depth and Ω(n2.1)
work

2 Any (1 + ε)–shortest paths
algorithm with polylog depth
using only hopsets requires
Ω(n1+ε′) work [ABP18]

This Paper

1 Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

2 Compute (1 + ε)–approximate
shortest path in polylog depth
and nearly linear work via
[She17] and low hop emulators

Given a graph G = (V ,E ), a low hop emulator is a weighted
graph H = (V ,F ) where any shortest (s − t)–path with
O(log log n) edge traversals and |F | = O

(
m · poly(log n)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4 / 59



Previous and New Results

Previous Results

1 Use hopset [Coh94] to solve
(1 + ε)–shortest paths in
polylog depth and Ω(n2.1)
work

2 Any (1 + ε)–shortest paths
algorithm with polylog depth
using only hopsets requires
Ω(n1+ε′) work [ABP18]

This Paper

1 Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

2 Compute (1 + ε)–approximate
shortest path in polylog depth
and nearly linear work via
[She17] and low hop emulators

Given a graph G = (V ,E ), a low hop emulator is a weighted
graph H = (V ,F ) where any shortest (s − t)–path with
O(log log n) edge traversals and |F | = O

(
m · poly(log n)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4 / 59



Previous and New Results

Previous Results

1 Use hopset [Coh94] to solve
(1 + ε)–shortest paths in
polylog depth and Ω(n2.1)
work

2 Any (1 + ε)–shortest paths
algorithm with polylog depth
using only hopsets requires
Ω(n1+ε′) work [ABP18]

This Paper

1 Construct a novel data
structure, a low hop emulator,
to solve approximate single
source shortest paths

2 Compute (1 + ε)–approximate
shortest path in polylog depth
and nearly linear work via
[She17] and low hop emulators

Given a graph G = (V ,E ), a low hop emulator is a weighted
graph H = (V ,F ) where any shortest (s − t)–path with
O(log log n) edge traversals and |F | = O

(
m · poly(log n)

)
.

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 4 / 59



Overview

1 Constructing a Low Hop Emulator
Constructing a subemulator
Recursive subemulators
Collapsing into a low–hop emulator
Constructing a low–hop emulator (in parallel)

2 (1 + ε) shortest paths in polylog depth and nearly linear work
Solving shortest paths via optimization and Sherman’s framework

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 5 / 59



Constructing a low hop emulator

To construct a low hop emulator,

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Every vertex v ∈ V is close to a vertex in S

2 Distances in H approximate distances in G
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Constructing a subemulator

A subemulator is a graph H = (S ,F ′) where S ⊂ V and F ′ is a
weighted edge set that approximates distances well.

1 Select vertices first by sampling

2 Add more vertices to ensure vertex in V is close to a vertex in S
3 Add edges and assign weights so that local distances are

well–approximated

Our analysis depends on the ball BG ,b(v), which is the closest b vertices
(graph distance) to v in G ,

Figure: Ball
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Selecting vertices

Fix a ball size b (to be defined later).
1 Construct S by sampling every vertex with probability

p = min(50 log n
b , 1

2 )

2 If v ∈ V is not near any vertex in S , add v to S

3 Store the leader q(v) ← closest vertex u ∈ S to v ∈ V

Output: A sparse vertex set S and mapping q : V → S
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Adding edges

Adding edges:
1 For all (u, v) ∈ E , add edge

(
q(u), q(v)

)
2 Fix v ∈ V . ∀u ∈ B(v), add edge

(
(q(u), q(v)

)
When adding an edge e =

(
q(u), q(v)

)
to F , update weight

w
(
e
)
= min

{
w(e), (initialize to ∞)

dG (q(u), u) + dG (u, v) + dG (v , q(v))
.

Figure: Encoding existing edges
Figure: Encoding close edges
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Properties of subemulators

Given a subemulator H = (S ,F ′), Size

E
[
|S |
]
< n

|F ′| ≤ m+ nb

Distance approximation

For any u, v ∈ S ,

dG (u, v) ≤ dH(u, v) ≤ 8 · dG (u, v).

For any u, v ∈ V ,

dH
(
q(u), q(v)

)
≤ dG

(
u, q(u)

)
+ 22 · dG (u, v) + dG

(
v , q(v)

)
.
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8-approximation for shortest (u, v)–path

Consider arbitrary u, v ∈ S and its shortest path in G .
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8-approximation for shortest (u, v)–path

dH(u, v) ≤
t

∑
i=1

wH

(
q(yi−1), q(xi )

)
+ wH

(
q(xi ), q(yi )

)
+ wH(yt , v)

≤ 8 ·
( t

∑
i=1

wG (yi−1, xi ) + wG (xi , yi ) + wG (yt , v)
)

= 8 · dG (u, v).
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Constructing a Low Hop Emulator

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator
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Recursive subemulators

Set b0 � n.

Let the first subemulator H0 be the original graph G .

While |V (Hi )| ≥ bi :
1 ∀v ∈ V (Hi ), save BHi ,bi (v)

2 Hi+1 ← SUBEMULATOR(Hi , bi )

3 Update bi+1 ← b1.25i and i ← i + 1

Output: Set of subemulators Hi and set of balls B(v ′), ∀v ′ ∈ Hi
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Recursive subemulators

Figure: Recursive subemulators
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Calculating distances from multiple subemulators

Let u, v be arbitrary vertices whose distance we want to compute.

d = 0, i = 0
u0 = u, v0 = v
While ui , vi are not in the same ball:

1 d ← d + dHi

(
q(ui ), ui )

)
+ dHi

(
v , q(vi )

)
2 ui+1 ← q(ui ), vi+1 ← q(vi )

3 i ← i + 1
Return d + dHi

(ui , vi ).
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Calculating distances from multiple subemulators

Figure: Traversing H0
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Calculating distances from multiple subemulators

Figure: Traversing H1
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Calculating distances from multiple subemulators

Figure: Traversing H2
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Calculating distances from multiple subemulators

Figure: Near vertices exact distance
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Properties of a distance oracle

1 Number of subemulators is O(log log n)

2 Traversing up–down subemulators to get (u, v)–shortest path is
26O(log log n) = poly(log n)–approximation

3 Store O(log log n) subemulators and each vertex’s ball

Andoni, Stein, Zhong (Columbia) Low Hop Emulators and Applications April 20, 2020 21 / 59



Constructing a Low Hop Emulator

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator
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Collapsing towards a low–hop emulator

1 V ′ ←
(
V (H0), 0

)⋃
. . .
(
V (Hi ), i

)
. . .
⋃ (

V (Ht), t
)

2 Add the edge from a vertex up to its leaders in next level

3 Keep all edges within each subemulator

4 Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wF

(
(u, i), (v , j)

)
= 27t−max(i ,j) · dHi

(u, v).
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Collapsing towards a low–hop emulator

Figure: Edges between levels
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Collapsing towards a low–hop emulator

Figure: Edges within a level
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Collapsing towards a low–hop emulator

Figure: Edges between nearby vertices
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Collapsing towards a low–hop emulator

Figure: Scaling edges
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Collapsing towards a low–hop emulator

1 Can remove copies of a vertex v , (v , 0), (v , 1), . . ., and preserve edges
by squishing all copies of vertex to bottom level

OK since have orange edges between (v , i) and (v , i + 1)

are weight zero.

2 There always exists a shortest (u − v)–path with minimial edge
traversals without using blue edges

Close edges will be covered by green edges and far edges

will never be used.
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Collapsing towards a low–hop emulator

Figure: Almost low–hop emualtor
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Collapsing towards a low–hop emulator

Figure: Removing redundant vertices
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Collapsing towards a low–hop emulator

Figure: Remove blue edges
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Recap

High level approach:

1 Construct a subemulator

2 Recursive subemulators

3 Collapse all subemulators down to a single graph → low–hop emulator

Our constructed graph H = (V ′,F ):

1 Shortest path requires O(log log n) traversals

2 Distance is 27O(log log n) = poly(log n)–approximated

3 V ′ = V

4 E[|F |] = O
(
n · poly(log n)

)
Corollary: H is a low–hop emulator.
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Constructing a low–hop emulator (in parallel)

Assume that we have computer that allows concurrent reads and
concurrent writes (CRCW).

1 Create the ball centered at v

2 Selecting vertices

3 Adding edges

4 Recursive subemulators

5 Collapsing towards a low–hop emulator
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Creating the ball centered at v (in parallel)

Uses path–doubling idea as done in Floyd–Warshall.

L0(v)← closest b neighbors of v (including v itself)

For u ∈ L0(v), compute dist(0)(v , u)

For i = 1, . . . , t = dlog ne:
1 ∀v , u ∈ V , set dist(i)(v , u)← ∞
2 Fix v ∈ V . Consider (v , x , u) such that x ∈ Li−1(v) and

u ∈ Li−1(x). Update dist(i)(v , u) if

dist(i−1)(v , x) + dist(i−1)(x , u) is smaller

3 For every v ∈ V , set Li (v)← closest b vertices

Output: B(v)← Lt and exact distance d (t)(v , ·)
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 0
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 1
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 2
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Creating the ball centered at v (in parallel)

Figure: Expanding ball with b = 5. Reach of 4
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Creating the ball centered at v (in parallel)

L0(v)← closest b neighbors of v . Compute dist(0)(v , u)

Use polylog depth and nearly work-efficient parallel sorting algorithm
⇒ O(log2 n) depth and O(m log2 n) work

Initialize distance in O(1) depth and O(m) work
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Creating the ball centered at v (in parallel)

For i = 1, . . . , t = dlog ne:
1 ∀v , u ∈ V , set dist(i)(v , u)← ∞
2 Fix v ∈ V . Consider (v , x , u) such that x ∈ Li−1(v) and

u ∈ Li−1(x). Update dist(i)(v , u) if . . .
3 For every v ∈ V , set Li (v)← closest b vertices

We perform ball computations on each vertex in G or a subemulator Hi .
Repeat log n times:

1 ≤ b2 vertex pairs per vertex v ∈ V .

2 E[|V (Hi )|] = O(n · poly(log n))/b2i ⇒ O(n · poly(log n)) work and
O(1) depth per iteration

3 Use sorting algorithm
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Selecting vertices (in parallel)

Fix a ball size b (to be defined later).
1 Construct S by sampling every vertex

2 If v ∈ V is not near any vertex in S , add v to S

3 Store the leader q(v) ← closest vertex u ∈ S to v ∈ V

1 O(1) depth and O(n) work

2 Construct a ball. Check requires O(1) depth and O(n) work

3 Ditto
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Adding edges (in parallel)

Adding edges:
1 For all (u, v) ∈ E , add edge

(
q(u), q(v)

)
2 Fix v ∈ V . ∀u ∈ B(v), add edge

(
(q(u), q(v)

)
When adding an edge e =

(
q(u), q(v)

)
to F , update weight

w
(
e
)
= min

{
w(e), (initialize to ∞)

dG (q(u), u) + dG (u, v) + dG (v , q(v))
.

1 Uses ball to compute exact distances. O(1) depth and O(m) work

2 Ditto

3 Ditto
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Recursive subemulators (in parallel)

Set b0 � n.

Let the first subemulator H0 be the original graph G .

While |V (Hi )| ≥ bi :
1 ∀v ∈ V (Hi ), save BHi ,bi (v)

2 Hi+1 ← SUBEMULATOR(Hi , bi )

3 Update bi+1 ← b1.25i and i ← i + 1

Repeat O(log log n) times:

1 Ball construction

2 Proved is polylog depth and nearly linear

3 O(1)
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Collapsing towards a low–hop emulator (in parallel)

For every subemulator H0, . . . ,HO(log logn):
1 Add the edge from a vertex up to its leaders in next level

2 Add the edge between close vertices that are within same
subemulator

Let t be number of levels. Set

wF (u, v) = 27t−max(i ,j) · dHi
(u, v).

Repeat O(log log n) for each subemulator

1 O(1) depth and O
(
n · poly(log n)

)
work

2 Ditto

3 Weights: Ditto
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Constructing a low–hop emulator (in parallel)

Recap. Assuming we have a concurrent read, concurrent write
computational model, we can solve the following problems in polylog
depth and near linear work:

1 Create the ball centered at v

2 Selecting vertices

3 Adding edges

4 Recursive subemulators

5 Collapsing towards a low–hop emulator

Constructing a low–hop emulator can be done in same depth and work.
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Applications

Compute the following problems with polylog approx, polylog depth, and
nearly linear work:

1 SSSP via Bellman-Ford

2 Bourgain’s embedding

3 Low diameter decomposition

4 Metric tree embedding
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Uncapacitated min–cost flow (transshipment) problem

Let W ∈ Rm×m be a diagonal matrix of weights. Let A ∈ Rn×m be the
incidence matrix,

Aiu =


1 : ∃ edge u = (i , j)

−1 : ∃ edge u = (j , i)

0 : otherwise

.

Find a vector f ∈ Rm such that

min
f ∈Rm

‖Wf ‖1
s.t. Af = b,

where b ∈ Rn is the demand vector, where we require ∑
i
bi = 0.

If b(s) = 1, b(t) = −1, then solves (s, t)–shortest path length.
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Uncapacitated min–cost flow problem

An equivalent problem:

Let x = Wf . Find the optimal x∗ such that

x∗ = min
xRm
‖x‖1
s.t. AW−1x = b.

Lemma: There exists (1+ ε)–approximation algorithm to the op-
timization problem above in that runs in polylog depth if there
exists a matrix P such that

‖x∗‖1 ≤ ‖Pb‖1 ≤ O(poly log n) · ‖x∗‖1 .
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timization problem above in that runs in polylog depth if there
exists a matrix P such that

‖x∗‖1 ≤ ‖Pb‖1 ≤ O(poly log n) · ‖x∗‖1 .
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Earth Movers Distance Problem

The Earth Mover’s Distance (EMD) problem is

min
π:V×V→R≥0

∑
(u,v )∈V×V

π(u, v) · ‖φ(u)− φ(v)‖1

s.t. ∀u ∈ V , ∑
v∈V

π(u, v)− ∑
v∈V

π(v , u) = bu.

Find a vector f ∈ Rm such that

min
f ∈Rm

‖Wf ‖1
s.t. Af = b,
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Bourgain’s Embedding

Theorem (Bourgain’s Embedding)

Every metric space (V , dV ) can be embedded in `p with distortion
O(log n).

Given a graph G = (V ,E ) and distance d : V × V → R+, there exists a

mapping φ : V → [∆]O(log
2 n) such that

d(u, v) ≤ ‖φ(u)− φ(v)‖1 ≤ O(log n)d(u, v),

where ∆ ≤ ∑
e∈E

we .

Using Bourgain’s embedding via low–hop emulators, we can find a
mapping φ : V → [∆]η such that

OPTEMD(b) ≤ O(poly(log n))OPTtransshipment(b).
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Creating a preconditioner using grids

Figure: Grids
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Creating a preconditioner

Figure: Grids with points
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Creating a preconditioner

Figure: Points in same cell vs. random shift τ
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Creating a preconditioner

Construct a series of L = 1 + log ∆ grids Gi as above.

Let τ ∈ [∆] be a uniform random variable.

Lemma: Define the vector

h(i ,C ) = η · 2i ∑
v∈V :φ(v )+τ·1η∈C

bv ,

where i is the level of the grid (ie. Gi ) and C ∈ Gi is a cell. Then,

1 Eτ[‖h‖1] ≤ 2Lη ·OPTEMD(b)

2 ‖h‖1 ≥ OPTEMD(b),

where η = O(log2 n).
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Creating a preconditioner

Construct a vector h′ such that E
[
‖h‖1

]
= ‖h′‖1,

h′(i ,C ,τ) = η · ∑
v∈V :φ(v )+τ·1η∈C

bv .

Prescribes a matrix P ′ where

P ′(i ,C ,τ),v =

{
η : φ(v) + τ · 1η ∈ C

0 : otherwise
.

Then h′ = P ′b, and

‖x∗‖1 ≤
∥∥h′∥∥

1
=
∥∥P ′b∥∥

1
≤ (poly(log n)) ‖x∗‖1
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Creating a preconditioner

Figure: Preconditioner vs. Grids
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Uncapacitated min–cost flow problem

We want to solve the following problem:

Let x = Wf . Find the optimal x∗ such that

x∗ = min
xRm
‖x‖1
s.t. AW−1x = b.

Lemma: There exists (1+ ε)–approximation algorithm to the op-
timization problem above in that runs in polylog depth using a
matrix P ′ where

‖x∗‖1 ≤
∥∥P ′b∥∥

1
≤ O(poly log n) · ‖x∗‖1 .
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Summary

1 Constructing a Low Hop Emulator
Constructing a subemulator
Recursive subemulators
Collapsing into a low–hop emulator
Constructing a low–hop emulator (in parallel)

2 (1 + ε) shortest paths in polylog depth and nearly linear work
Solving shortest paths via optimization and Sherman’s framework
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Fin

Thanks. Questions?
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